Obrabotka Metallov 2022 Vol. 24 No. 1

OBRABOTKAMETALLOV Vol. 24 No. 1 2022 70 MATERIAL SCIENCE References 1. Bogachev I.N. Kavitatsionnoe razrushenie i kavitatsionnostoikie splavy [Cavitation destruction and cavitation-resistant alloys]. Moscow, Metallurgiya Publ., 1972. 192 p. 2. Singh R., Tiwari S.K., Mishra S.K. Cavitation erosion in hydraulic turbine components and mitigation by coatings: current status and future needs. Journal of Materials Engineering and Performance, 2012, vol. 21, pp. 1539–1551. DOI: 10.1007/s11665-011-0051-9. 3. Adamkowski A., Henke A., Lewandowski M. Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers. Engineering Failure Analysis, 2016, vol. 70, pp. 56–72. DOI: 10.1016/j. engfailanal.2016.07.011. 4. Gorbachenko E.O. Otsenka dolgovechnosti metallicheskikh materialov i sudovogo oborudovaniya pri kavitatsionnom iznashivanii metodom profi lometrii. Diss. kand. tekhn. nauk [Evaluation of the durability of metallic materials and ship equipment during cavitation wear by the profi lometry method. PhD eng. sci. diss.]. St. Petersburg, 2019. 150 p. 5. Korobov Yu.S., Alwan H.L., Barbosa M., Lezhnin N.V., Soboleva N.N., Makarov A.V., Deviatiarov M.S., Davydov A.Yu. Soprotivlenie erozionno-korrozionnomu kavitatsionnomu vozdeistviyu WC–CoCr- i WC– NiCr-pokrytii, poluchennykh metodom HVAF [Cavitation erosion-corrosion resistance of WC–CoCr and WC– NiCr HVAF coatings]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2019, vol. 21, no. 1, pp. 20–27. DOI: 10.15593/2224-9877/2019.1.03. 6. Vyas B., Preece C. Cavitation erosion of face centered cubic metals. Metallurgical andMaterials Transactions A, 1977, vol. 8, pp. 915–923. DOI: 10.1007/BF02661573. 7. Brujan E.A., Ikedab T., Matsumoto Y. Shock wave emission from a cloud of bubbles. Soft Matter, 2012, vol. 8, iss. 21, pp. 5777–5783. DOI: 10.1039/C2SM25379H. 8. Lauterborn W., Bolle H. Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 1975, vol. 72, pp. 391–399. DOI: 10.1017/S0022112075003448. 9. Plesset M.S., Chapman R.B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 1971, vol. 47, pp. 283–290. DOI: 10.1017/S0022112071001058. 10. Dular M., Bachert B., Stoffel B., Širok B. Relationship between cavitation structures and cavitation damage. Wear, 2004, vol. 257, pp. 1176–11841. DOI: 10.1016/j.wear.2004.08.004. 11. Vyas B., Preece C. Stress produced in a solid by cavitation. Journal of Applied Physics, 1976, vol. 47, pp. 5133–5138. DOI: 10.1063/1.322584. 12. Pohl M., Stella J., Hessing C. Comparative study on CuZnAl and CuMnZnAlNiFe shape memory alloys subjected to cavitation-erosion. Advanced Engineering Materials, 2003, vol. 5, pp. 251–256. DOI: 10.1002/ adem.200300341. 13. Espitia L.A., Toro A. Cavitation resistance, microstructure and surface topography of materials used for hydraulic components. Tribology International, 2010, vol. 43, pp. 2037–2045. DOI: 10.1016/j.triboint.2010.05.009. 14. Chiu K.Y., Cheng F.T., Man H.C. Cavitation erosion resistance of AISI 316L stainless steel laser surfacemodifi ed with NiTi. Materials Science and Engineering: A, 2005, vol. 392, pp. 348–358. DOI: 10.1016/j. msea.2004.09.035. 15. Chen M., Liu H., Wang L., Xu Z., Ji V., Jiang C. Residual stress and microstructure evolutions of SAF 2507 duplex stainless steel after shot peening. Applied Surface Science, 2018, vol. 459, pp. 155–163. DOI: 10.1016/j. apsusc.2018.07.182. 16. Park I.-C., Kim S.-J. Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating. Applied Surface Science, 2019, vol. 483, pp. 194–204. DOI: 10.1016/j. apsusc.2019.03.277. 17. Alwan H.L., KorobovYu.S., Soboleva N.N., Lezhnin N.V., MakarovA.V., Nikolaeva E.P., Deviatiarov M.S. Cavitation erosion-corrosion resistance of deposited austenitic stainless steel/E308L-17 electrode. Solid State Phenomena, 2020, vol. 299, pp. 908–913. DOI: 10.4028/www.scientifi c.net/SSP.299.908. 18. Gualco A., Svoboda H.G., Surian E.S. Effect of welding parameters on microstructure of Fe-based nanostructured weld overlay deposited through FCAW-S. Welding International, 2016, vol. 30, pp. 573–580. DOI: 10.1080/ 09507116.2015.1096533.

RkJQdWJsaXNoZXIy MTk0ODM1