Obrabotka Metallov 2022 Vol. 24 No. 4

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 63 TECHNOLOGY 3. Liu F., Chen Y., He C., Wang C., Li L., Liu Y., Wang Q. Very long life fatigue failure mechanism of electron beam welded joint for titanium alloy at elevated temperature. International Journal of Fatigue, 2021, vol. 152, p. 106446. DOI: 10.1016/j.ijfatigue.2021.106446. 4. Gangwar K., Ramulu M. Friction stir welding of titanium alloys: a review. Materials and Design, 2018, vol. 141, pp. 230–255. DOI: 10.1016/j.matdes.2017.12.033. 5. Gao F., Guo Y., Yang S., Yu Y., Yu W. Fatigue properties of friction stir welded joint of titanium alloy. Materials Science and Engineering: A, 2020, vol. 793, p. 139819. DOI: 10.1016/j.msea.2020.139819. 6. Mironov S., Sato Y.S., Kokawa H. Friction-stir welding and processing of Ti-6Al-4V titanium alloy: a review. Journal of Materials Science and Technology, 2018, vol. 34, iss. 1, pp. 58–72. DOI: 10.1016/j.jmst.2017.10.018. 7. Raut N., Yakkundi V., Vartak A. A numerical technique to analyze the trend of temperature distribution in the friction stir welding process for titanium Ti 6Al 4V. Materials Today: Proceedings, 2021, vol. 41, pt. 2, pp. 329–334. DOI: 10.1016/j.matpr.2020.09.336. 8. Nirmal K., Jagadesh T. Numerical simulations of friction stir welding of dual phase titanium alloy for aerospace applications. Materials Today: Proceedings, 2021, vol. 46, pt. 10, pp. 4702–4708. DOI: 10.1016/j.matpr.2020.10.300. 9. Su Y., Li W., Liu X., Gao F., Yu Y., Vairis A. Evolution of microstructure, texture and mechanical properties of special friction stir welded T-joints for an α titanium alloy. Materials Characterization, 2021, vol. 177, p. 111152. DOI: 10.1016/j.matchar.2021.111152. 10. Gao F., Guo Y., Yu W., Jiang P., Liao Z. Microstructure evolution of friction stir welding of Ti6321 titanium alloy based on the weld temperature below microstructure transformation temperature. Materials Characterization, 2021, vol. 177, p. 111121. DOI: 10.1016/j.matchar.2021.111121. 11. Du S., Liu H., Jiang M., Hu Y., Zhou L. Eliminating the cavity defect and improving mechanical properties of TA5 alloy joint by titanium alloy supporting friction stir welding. Journal of Manufacturing Processes, 2021, vol. 69, pp. 215–222. DOI: 10.1016/j.jmapro.2021.07.044. 12. Liu H., Fujii H. Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding. Materials Science and Engineering: A, 2018, vol. 177, pp. 140–148. DOI: 10.1016/j. msea.2017.11.006. 13. Raut N., Yakkundi V., Sunnapwar V., Medhi T., Jain V.K.S. A specifi c analytical study of friction stir welded Ti-6Al-4V grade 5 alloy: stir zone microstructure and mechanical properties. Journal of Manufacturing Processes, 2022, vol. 76, pp. 611–623. DOI: 10.1016/j.jmapro.2022.02.036. 14. Zhou L., Yu M., Chen W., Zhang Z., Du S., Liu H., Yu Y., Gao F. Microstructure and mechanical properties of friction stir processed TA5 alloy. Transactions of Nonferrous Metals Society of China, 2021, vol. 31, iss. 2, pp. 404–415. DOI: 10.1016/S1003-6326(21)65505-X. 15. Maji P., Karmakar R., Kanti Nath R., Paul P. An overview on friction stir welding/processing tools. Materials Today: Proceedings, 2022, vol. 58, pt. 1, pp. 57–64. DOI: 10.1016/j.matpr.2022.01.009. 16. Xu X., Liu Q., Wang J., Ren X., Hou H. The heat treatment improving the mechanical and fatigue property of TA15 alloy joint by friction stir welding. Materials Characterization, 2021, vol. 180, p. 111399. DOI: 10.1016/j. matchar.2021.111399. 17. Li J., ShenY., HouW., QiY. Friction stir welding ofTi-6Al-4Valloy: Friction tool, microstructure, andmechanical properties. Journal of Manufacturing Processes, 2020, vol. 58, pp. 344–354. DOI: 10.1016/j.jmapro.2020.08.025. 18. Mashinini P.M., Dinaharan I., David Raja Selvam J., Hattingh D.G. Microstructure evolution and mechanical characterization of friction stir welded titanium alloy Ti–6Al–4V using lanthanated tungsten tool. Materials Characterization, 2018, vol. 139, pp. 328–336. DOI: 10.1016/j.matchar.2018.03.020. 19. Du S., Liu H., Jiang M., Zhou L., Gao F. The performance of a Co-based alloy tool in the friction stir welding of TA5 alloy. Wear, 2022, vol. 488–489, p. 204180. DOI: 10.1016/j.wear.2021.204180. 20. Vardak S., Shatooti S., Zangeneh S. Manufacturing of porous titanium using friction stir welding. Materials Letters, 2022, vol. 310, p. 131430. DOI: 10.1016/j.matlet.2021.131430. 21. Kumar SinghA., Kaushik L., Singh J., Das H., Mondal M., Hong S.-T., Choi S.-H. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing. International Journal of Plasticity, 2022, vol. 150, p. 103184. DOI: 10.1016/j.ijplas.2021.103184. 22. Amirov A., Eliseev A., Kolubaev E., Filippov A., Rubtsov V. Wear of ZhS6U nickel superalloy tool in friction stir processing on commercially pure titanium. Metals, 2020, vol. 10 (6), p. 799. DOI: 10.3390/met10060799. 23. Amirov A.I., Chumaevskii A.V., Vorontsov A.V. Formation of (α + β) titanium welds by friction stir welding using heat-resistant alloy tool. AIPConference Proceedings, 2020, vol. 2310 (1), p. 020017. DOI: 10.1063/5.0034654. Confl icts of Interest The authors declare no confl ict of interest.  2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1