Obrabotka Metallov 2023 Vol. 25 No. 2

OBRABOTKAMETALLOV Vol. 25 No. 2 2023 43 EQUIPMENT. INSTRUMENTS 4. Dumitrache A., Borangiu T., Dogar A. Automatic generation of milling toolpaths with tool engagement control for complex part geometry. IFAC Proceedings Volumes, 2020, vol. 43, pp. 252–257. DOI: 10.3182/20100701-2-pt4011.00044. 5. Timiryazev V.A., Khostikoev M.Z., Danilov I.K., Datsko A.G. Upravlenie tochnost’yu konturnoi obrabotki kontsevymi frezami [Precision control of contour machining with end mills]. STIN = Russian Engineering Research, 2020, no. 12, pp. 22–26. (In Russian). 6. Han J., Wu L., Yuan B., Tian X., Xia L. A novel gear machining CNC design and experimental research. International Journal of Advanced Manufacturing Technology, 2017, vol. 88, pp. 1711–1722. DOI: 10.1007/s00170016-8883-y. 7. Kim H.C., Lee S.G., Yang M.Y. An optimized contour parallel tool path for 2D milling with fl at endmill. The International Journal of Advanced Manufacturing Technology, 2006, vol. 31, pp. 567–573. DOI: 10.1007/s00170005-0228-1. 8. Tsai M.D., Takata S., Inui M., Kimura F., Sata T. Operation planning based on cutting process models. CIRP Annals – Manufacturing Technology, 1991, vol. 40, pp. 95–98. DOI: 10.1016/S0007-8506(07)61942-8. 9. Engin S., Altintas Y. Mechanics and dynamics of general milling cutters. Part I: Helical end mills. International Journal of Machine Tools and Manufacture, 2001, vol. 41, pp. 2195–2212. DOI: 10.1016/S0890-6955(01)00045-1. 10. Kamsyuk M.S. O tochnosti obrabotki slozhnokonturnykh detalei na stankakh s ChPU, osnashchennykh povorotnymi stolami [About the accuracy of processing of complex-contoured parts on CNC machines equipped with turntables]. Tochnost’ i proizvoditel’nost’ obrabotki na stankakh s ChPU [Precision and productivity of machining on CNC machines]. Moscow, BMSTU Publ., 1982, pp. 59–86. 11. Kolesov K.N. Povyshenie eff ektivnosti raboty kontsevykh tverdosplavnykh frez na osnove vybora elementov kinematiki formoobrazovaniya i konstruktivnykh parametrov instrumenta. Avtoref. diss. kand. tekhn. nauk [Improving the effi ciency of end carbide cutters based on the selection of kinematics elements of shaping and design parameters of the tool. Author’s abstract of PhD eng. sci. diss.]. Moscow, 2011. 19 p. 12. Skorkin A., Kondratyuk O., Lamnauer N., Burdeinaya V. Improving effi ciency of machining the geometrically complex shaped surfaces by milling with a fi xed shift of the cutting edge. Eastern-European Journal of Enterprise Technologies, 2019, vol. 2, no. 1 (98), pp. 60–69. DOI: 10.15587/1729-4061.2019.163325. 13. Koltsov A.G., Blokhin D.A., Krivonos D.A., Narezhnev A.N. Infl uence assessment of metal-cutting equipment geometrical accuracy on OMV-technologies accuracy. 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics), Omsk, Omsk, 15–17 November 2016, p. 7819029. DOI: 10.1109/Dynamics.2016.7819029. 14. Fussell B.K., Jerard R.B., Hemmett J.G. Modeling of cutting geometry and forces for 5-axis sculptured surface machining. Computer aided design, 2003, vol. 35, no. 4, pp. 333–346. 15. Petrakov Y., Shuplietsov D. Programming of adaptive machining for end milling. Mechanics and Advanced Technologies, 2017, vol. 1 (79), pp. 34–40. DOI: 10.20535/2521-1943.2017.79.97342. 16. Lee S.K., Ko S.L. Development of simulation system for machining process using enhanced Z map model. Journal of Materials Processing Technology, 2002, vol. 3, pp. 608–617. DOI: 10.1016/s0924-0136(02)00761-6. 17. Belogay E., Cabrelli C., Molter U., Shonkwiler R. Calculating the Hausdorff distance between curves. Information Processing Letters, 1997, vol. 64, iss. 1, pp. 17–22. DOI: 10.1016/s0020-0190(97)00140-3. 18. Nosov P.S., Yalansky A.D., Iakovenko V.О. 3D Modelling of rehabilitation corset with use of powershape delcam. Information Technologies in Education, Science and Production, 2013, vol. 1, iss. 2, pp. 222–230. 19. Ott O.S. Razrabotka sbornykh diskovykh frez s kinematicheskim obkatochnym dvizheniem dlya obrabotki zubchatykh koles krupnogo modulya na stankakh s ChPU. Avtoref. diss. kand. tekhn. nauk [Development of prefabricated disk cutters with kinematic winding motion for processing gears of a large module on CNC machines. Author’s abstract of PhD eng. sci. diss.]. Moscow, 2011. 23 p. 20. Ott O.S., Artyukhin L.L. Shaping involute profi les by means of a disk tool. Russian Engineering Research, 2011, vol. 31, no. 3, pp. 283–287. DOI: 10.3103/S1068798X11030221. 21. Ott O.S. Formirovanie evol’ventnykh poverkhnostei detalei diskovym instrumentom [Formation of involute surfaces of parts with a disk tool]. Vestnik MGTU «Stankin» = Vestnik MSUT “Stankin”, 2010, vol. 3 (11), pp. 67–71. 22. Grechishnikov V.A., Kolesov N.V., Petukhov Yu.E. Matematicheskoe modelirovanie v instrumental’nom proizvodstve [Mathematical modeling in tool manufacturing]. Moscow, MSUT “Stankin” Publ., 2003. 113 p. 23. Gołębski R., Boral P. Study of machining of gears with regular and modifi ed outline using CNC machine tools. Materials, 2021, vol. 14, p. 2913. DOI: 10.3390/ma14112913. 24. Ivakhnenko A.G., Kuts V.V., Erenkov O.Yu., Oleinik A.V., Sarilov M.Yu. Metodologiya strukturnoparametricheskogo sinteza metallorezhushchikh sistem [Methodology of structural-parametric synthesis of metal-

RkJQdWJsaXNoZXIy MTk0ODM1