Obrabotka Metallov 2023 Vol. 25 No. 3

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 35 TECHNOLOGY References 1. Fan W., Liu Y., Li J. Development status and prospect of rail grinding technology for high speed railway. Journal of Mechanical Engineering, 2018, vol. 54, iss. 22, pp. 184–193. DOI: 10.3901/JME.2018.22.184. 2. Schoch W. Grinding of rails on high-speed railway lines: a matter of great importance. Rail Engineering International, 2007, vol. 36, iss. 1, pp. 6–8. 3. Funke H. Rail grinding. Berlin, Transpress, 1986. 153 p. 4. Cuervo P., Santa J., ToroA. Correlations between wear mechanisms and rail grinding operations in a commercial railroad. Tribology International, 2015, vol. 2, pp. 265–273. DOI: 10.1016/j.triboint.2014.06.025. 5. Krishna V., Hossein-Nia S., Casanueva C., Stichel S. Long term rail surface damage considering maintenance interventions. Wear, 2020, vol. 460–461, p. 203462. DOI: 10.1016/j.wear.2020.203462. 6. Ding J., Lewis R., Beagles A., Wang J. Application of grinding to reduce rail side wear in straight track. Wear, 2018, vol. 402–403, p. 71–79. DOI: 10.1016/j.wear.2018.02.001. 7. Ilinykh A., Matafonov A., Yurkova E. Effi ciency of the production process of grinding rails on the basis of optimizing the periodicity of works. Advances in Intelligent Systems and Computing, 2019, vol. 1116, pp. 672–681. DOI: 10.1007/978-3-030-37919-3_67. 8. Ilyinykh A.S. Skorostnoe shlifovanie rel’sov v puti [Speed rail grinding]. Mir transporta = World of Transport and Transportation, 2011, no. 3, pp. 56–61. 9. Ilinykh A.S., Pikalov A.S., Galay M.S., Miloradovich V.K. Povyshenie proizvoditel’nosti rel’soshlifoval’nykh poezdov metodom skorostnogo shlifovaniya [Increasing the performance of rail grinding trains by the method of speed grinding]. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Tekhnicheskie nauki = University News. North-Caucasian Region. Technical Sciences Series, 2022, no. 4 (216), pp. 46–56. DOI: 10.17213/15603644202244656. 10. Doman D., Warkentin A., Bauer R. A survey of recent grinding wheel topography models. International Journal of Machine Tools &Manufacture, 2006, vol. 46, iss. 3, pp. 343–352. DOI: 10.1016/j.ijmachtools.2005.05.013. 11. ZengaW., Lib Z., Peib Z., Treadwell C. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. International Journal of Machine Tools & Manufacture, 2005, vol. 45, iss. 12–13, pp. 1468–1473. 12. JeongW., Shin J. Grinding eff ect analysis according to control variables of compact rail surface grindingmachine. Journal of the Korean Society for Railway, 2020, vol. 23, iss. 7, pp. 688–695. DOI: 10.7782/JKSR.2020.23.7.688. 13. Koshin A.A., Chaplygin B.A., Isakov D.V. Adequacy of the operating conditions of abrasive grains. Russian Engineering Research, 2011, vol. 31, no. 12, pp. 1221–1226. 14. AksenovV.A., IlinykhA.S., GalayM.S. MatafonovA.V. Osobennosti formirovaniya tekhnologicheskogo protsessa ploskogo shlifovaniya tortsom kruga pri uprugoi podveske shlifoval’noi golovki [Features of formation of the fl at grinding technological process by an end face of a circlewith an elastic suspension grinding head]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2016, vol. 18, no. 4, pp. 34–47. DOI: 10.15593/2224-9877/2016.4.03. 15. Mesaritis M., Shamsa M., Cuervo P., Santa J., ToroA., Marshall M., Lewis R. Alaboratory demonstration of rail grinding and analysis of running roughness and wear. Wear, 2020, vol. 456–457. – DOI: 10.1016/j.wear.2020.203379. 16. Satoh Y., Iwafuchi K. Eff ect of rail grinding on rolling contact fatigue in railway rail used in conventional line in Japan. Wear, 2008, vol. 265, iss. 9–10, pp. 1342–1348. DOI: 10.1016/j.wear.2008.02.036. 17. Zhou K., Ding H., Zhang S., Guo J., Liu Q., Wang W. Modelling and simulation of the grinding force in rail grinding that considers the swing angle of the grinding stone. Tribology International, 2019, vol. 137, pp. 274–288. DOI: 10.1016/j.triboint.2019.05.012. 18. Zhou К., Ding Н., Wang R., Yang J., Guo J., Liu Q., Wang W. Experimental investigation on material removal mechanism during rail grinding at diff erent forward speeds. Tribology International, 2020, vol. 143, p. 106040. DOI: 10.1016/j.triboint.2019.106040. 19. Uhlmann E., Lypovka P., Hochschild L., Schröer N. Infl uence of rail grinding process parameters on rail surface roughness and surface layer hardness. Wear, 2016, vol. 366–367, pp. 287–293. DOI: 10.1016/j.wear.2016.03.023. 20. JeongW., Shin J. Grinding eff ect analysis according to control variables of compact rail surface grindingmachine. Journal of the Korean Society for Railway, 2020, vol. 23, iss. 7, pp. 688–695. – DOI: 10.7782/JKSR.2020.23.7.688. 21. Ilinykh A.S. Design of abrasive tool for high-rate grinding. IOP Conference Series: Earth and Environmental Science, 2016, vol. 53, p. 012024. DOI: 10.1088/1755-1315/53/1/012024. Confl icts of Interest The authors declare no confl ict of interest. © 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1