Obrabotka Metallov 2023 Vol. 25 No. 3

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 77 EQUIPMENT. INSTRUMENTS The International Journal of Advanced Manufacturing Technology. – 2008. – Vol. 38, iss. 1–2. – P. 48–58. DOI: 10.1007/s00170-007-1078-9. 50. Ding H.T., Shin Y.C. Laser-assisted machining of hardened steel parts with surface integrity analysis // International Journal of Machine Tools and Manufacture. – 2010. – Vol. 50, iss. 1. – P. 106–114. – DOI: 10.1016/j.ijmachtools.2009.09.001. 51. Jeon Y., Lee C.M. Current research trend on laser assisted machining // International Journal of Precision Engineering and Manufacturing. – 2012. – Vol. 13, iss. 2. – P. 311–317. – DOI: 10.1007/s12541-012-0040-4. 52. Ahn J.W., Woo W.S., Lee C.M. A study on the energy effi ciency of specifi c cutting energy in laserassisted machining // Applied Thermal Engineering. – 2016. – Vol. 94. – P. 748–753. – DOI: 10.1016/j. applthermaleng.2015.10.129. 53. Hybrid-hybrid turning of micro-SiCp/ AA2124 composites: A comparative study of laserand-ultrasonic vibration-assisted machining / J. Kim, L. Zani, A. Abdul-Kadir, A. Roy, K.P. Baxevanakis, L.C.R. Jones, V.V. Silberschmidt // Journal of Manufacturing Processes. – 2023. – Vol. 86. – P. 109– 125. – DOI: 10.1016/j.jmapro.2022.12.045. 54. Numerical simulation and experimental investigation of structured surface generated by 3D vibration-assisted milling / B. Lv, B. Lin, Z. Cao, W. Liu, G. Wang // Journal of Manufacturing Processes. – 2023. – Vol. 89. – P. 371–383. – DOI: 10.1016/j. jmapro.2023.01.010. 55. Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted fi nishing milling / J. Witte, D. Huebler, D. Schroepfer, A. Boerner, T. Kannengiesser // Wear. – 2023. – Vol. 522. – P. 204722. – DOI: 10.1016/j.wear.2023.204722. 56. High-frequency electrical discharge assisted milling of Inconel 718 under copper-beryllium bundle electrodes / M. Xu, R. Wei, C. Li, T.J. Ko // Journal of Manufacturing Processes. – 2023. – Vol. 85. – P. 1116– 1132. – DOI: 10.1016/j.jmapro.2022.12.026. 57. High-power diode laser assisted hard turning of AISI D2 tool steel / P. Dumitrescu, P. Koshy, J. Stenekes, M.A. Elbestawi // International Journal of Machine Tools and Manufacture. – 2016. – Vol. 46, iss. 15. – P. 2009– 2016. – DOI: 10.1016/j.ijmachtools.2006.01.005. 58. Kim E.-J., Lee C.-M. Experimental study on power consumption of laser and induction assisted machining with Inconel 718 // Journal of Manufacturing Processes. – 2020. – Vol. 59. – P. 411–420. – DOI: 10.1016/j.jmapro.2020.09.064. 59. Eff ects of laser-assisted grinding on surface integrity of zirconia ceramic / Z. Ma, Z. Wang, X. Wang, T. Yu // Ceramics International. – 2020. – Vol. 46, iss. 1. – P. 921–929. – DOI: 10.1016/j.ceramint.2019.09.051. 60. Choi Y.H., Lee C.M. A study on the machining characteristics of AISI 1045 steel and Inconel 718 with circular cone shape in induction assisted machining // Journal of Manufacturing Processes. – 2018. – Vol. 34. – P. 463–476. – DOI: 10.1016/j.jmapro.2018.06.023. 61. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V. Peculiarities of high-energy induction heating during surface hardening in hybrid processing conditions // Metals. – 2021. –Vol. 11, iss. 9. – P. 1354. –DOI: 10.3390/ met11091354. 62. Kim E.J., Lee C.M. A study on the optimal machining parameters of the induction assisted milling with Inconel 718 // Materials. – 2019. – Vol. 12, iss. 2. – P. 233. – DOI: 10.3390/ma12020233. 63. Investigation of surface integrity in laser-assisted machining of nickel based superalloy / D. Xu, Z. Liao, D. Axinte, J.A. Sarasua, R. M’Saoubi, A. Wretland // Materials & Design. – 2020. – Vol. 194. – P. 108851. – DOI: 10.1016/j.matdes.2020.108851. 64. Kim J.-H., Kim E.-J., Lee C.-M. A study on the heat aff ected zone and machining characteristics of diffi cult-to-cut materials in laser and induction assisted machining // Journal of Manufacturing Processes. – 2020. – Vol. 57. – P. 499–508. – DOI: 10.1016/j. jmapro.2020.07.013. 65. Ha J.-H., Lee C.-M. A study on the thermal eff ect by multi heat sources and machining characteristics of laser and induction assisted milling // Materials. – 2019. – Vol. 12, iss. 7. – P. 1032. – DOI: 10.3390/ma12071032. 66. Woo W.S., Lee C.M. A study on the optimum machining conditions and energy effi ciency of a laserassisted fi llet milling // International Journal of Precision Engineering and Manufacturing-Green Technology. – 2018. – Vol. 5, iss. 5. – P. 593–604. – DOI: 10.1007/ s40684-018-0061-2. 67. Zaeh M.F., Wiedenmann R., Daub R. A thermal simulation model for laser-assisted milling // Physics Procedia. – 2010. –Vol. 5. – P. 353–362. –DOI: 10.1016/j. phpro.2010.08.062. 68. Laser-assisted milling of advanced materials / C. Brecher, M. Emonts, C.-J. Rosen, J.-P. Hermani // Physics Procedia. – 2011. – Vol. 12. – P. 599–606. – DOI: 10.1016/j.phpro.2011.03.076. 69. Venkatesan K., Ramanujam R., Kuppan P. Laser assisted machining of diffi cult to cut materials: research opportunities and future directions – A comprehensive review // Procedia Engineering. – 2014. – Vol. 97. – P. 1626–1636. – DOI: 10.1016/j.proeng.2014.12.313. 70. Kim I.-W., Lee C.-M. A study on the machining characteristics of specimens with spherical shape using laser-assisted machining // Applied Thermal Engineering. – 2016. – Vol. 100. – P. 636–645. – DOI: 10.1016/j.applthermaleng.2016.02.005. 71. Effi ciency of hybrid equipment combining operations of surface hardening by high frequency currents

RkJQdWJsaXNoZXIy MTk0ODM1