Обработка металлов

ОБРАБОТКА МЕТАЛЛОВ

ТЕХНОЛОГИЯ • ОБОРУДОВАНИЕ • ИНСТРУМЕНТЫ
Print ISSN: 1994-6309    Online ISSN: 2541-819X
English | Русский

Последний выпуск
Том 26, № 1 Январь - Март 2024

Влияние механической активации порошка ВК-8 на свойства спеченных твердых сплавов

Том 23, № 1 Январь - Март 2021
Авторы:

Абдульменова Екатерина Владимировна,
Кульков Сергей Николаевич
DOI: http://dx.doi.org/10.17212/1994-6309-2021-23.1-68-78
Аннотация

Введение. Для изготовления инструментов и деталей, подвергаемых значительному износу, широко используется метод порошковой металлургии. Улучшить структуру и свойства сплава, полученного методом порошковой металлургии, можно реализовав предварительную высокоинтенсивную механическую активацию порошка. В процессе такой обработки возможно формирование наноструктур, могут происходить аморфизация материала и фазовые превращения, что, безусловно, может отразится на свойствах материала. Подобным исследованиям посвящено ряд работ, однако не всегда механическая обработка приводит к положительному результату. Поэтому исследование влияния высокоинтенсивной механической активацией на структуру и свойства сплавов на основе карбида вольфрама важны и актуальны. Цель работы: изучить влияние высокоинтенсивной механической активации порошка ВК-8 на структуру и свойства спеченных образцов. В работе исследованы сплавы, полученные методом порошковой металлургии, при использовании механически активированных порошков в течение от 10 до 300 с в планетарно шаровой мельнице. Материалы и методы. Сплавы получены методом холодного одностороннего прессования с последующим спеканием при температуре 1400 °С в вакуумной печи. Морфология частиц порошков и структура сплавов изучались методом сканирующей электронной микроскопии. Металлографический анализ сплавов проводился на оптическом микроскопе. Структура и фазовый состав образцов исследованы методами рентгеноструктурного и рентгенофазового анализа. Твердость спеченных образцов измеряли на твердомере. Результаты и их обсуждение. Показано, что при спекании порошков формируются сплавы с WC- и Co-фазами, с параметром решетки WC-фазы, хорошо согласующимися с литературными данными. В образцах при механической активации более 100 с формируется вторая карбидная фаза Co3W3C. Установлена минимальная пористость 7,8 ± 1 % в спеченном образце при 30 с механической обработки. Твердость зависит от времени механической активации, размера зерна, пористости и содержания второго карбида. Таким образом, механическая активация может быть эффективна для увеличения физико-механических свойств и подавления роста зерна, однако в этом случае необходимо проводить механическую обработку в интервале времен 60…100 с.


Ключевые слова: Карбид вольфрама, механическая активация, фазовый состав, рентгеноаморфное состояние, область когерентного рассеяния, микродисторсия, параметр решетки, пористость, твердость

Список литературы

1. Plasma synthesis of tungsten carbide and cobalt nanocomposite powder / T. Ryu, H.Y. Sohn, K.S. Hwang, Z.Z. Fang // Journal of Alloys and Compounds. – 2009. – Vol. 481 (1–2). – P. 274–277. – DOI: 10.1016/j.jallcom.2009.03.134.



2. Properties and rapid consolidation of ultra-hard tungsten carbide / I.-J. Shon, B.-R. Kim, J.-M. Doh, J.-K. Yoon, K.-D. Woo // Journal of Alloys and Compounds. – 2010. – Vol. 489 (1). – P. L4–L8. – DOI: 10.1016/j.jallcom.2009.09.040.



3. Lee G.-H., Kang S. Sintering of nano-sized WC-Co powders produced by a gas reduction-carburization process // Journal of Alloys and Compounds. – 2006. – Vol. 419 (1–2). – P. 281–289. – DOI: 10.1016/j.jallcom.2005.09.060.



4. Kim J.Y., Kang S.H. WC platelet formation via high-energy ball mill // International Journal of Refractory Metals and Hard Materials. – 2014. – Vol. 47. – P. 108–112. – DOI: 10.1016/j.ijrmhm.2014.06.024.



5. Kim B.K., Ha G.H., Lee D.W. Sintering and microstructure of nanophase WC/Co hardmetals // Journal of Materials Processing Technology. – 1997. – Vol. 63. – P. 317–321. – DOI: 10.1016/s0924-0136(96)02748-3.



6. Achieving combination of high hardness and toughness for WC-8Co hardmetals by creating dual scale structured plate-like WC / W. Wang, Z. Lu, M. Zeng, M. Zhu // Ceramics International. – 2018. – Vol. 44 (3). – P. 2668–2675. – DOI: 10.1016/j.ceramint.2017.10.190.



7. Stewart D.A., Shipway P.H., McCartney D.G. Microstructural evolution in thermally sprayed WC-Co coatings: comparison between nanocomposite and conventional starting powders // Acta Materialia. – 2000. – Vol. 48 (7). – P. 1593–1604. – DOI: 10.1016/s1359-6454(99)00440-1.



8. Fabijanic T.A., Alar Z., Coric D. Influence of consolidation process and sintering temperature on microstructure and mechanical properties of near nano- and nanostructured WC-Co cemented carbides // International Journal of Refractory Metals and Hard Materials. – 2016. – Vol. 54. – P. 82–89. – DOI: 10.1016/j.ijrmhm.2015.07.017.



9. Consolidation of ultrafine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties / H.-C. Kim, I.-J. Shon, J.-K. Yoon, J.-M. Doh // International Journal of Refractory Metals and Hard Materials. – 2007. – Vol. 25 (1). – P. 46–52. – DOI: 10.1016/j.ijrmhm.2005.11.004.



10. El-Eskandarany M.S. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders // Journal of Alloys and Compounds. – 2000. – Vol. 305. – P. 225–238. – DOI: 10.1016/s0925-8388(00)00692-7.



11. Raihanuzzaman R.M., Xie Z.H., Hong S.J. Powder refinement, consolidation and mechanical properties of cemented carbides – an overview // Powder Technology. – 2014. – Vol. 261. – P. 1–13. – DOI: 10.1016/j.powtec.2014.04.024.



12. Koch C.C. Synthesis of nanostructured materials by mechanical milling: problems and opportunities // Nanostructured Materials. – 1997. – Vol. 9. – P. 13–22. – DOI: 10.1016/s0965-9773(97)00014-7.



13. Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere / L.E.R. Vega, D.R. Leiva, R.M. Leal Neto, W.B. Silva, R.A. Silva, T.T. Ishikawa, W.J. Botta // International Journal of Hydrogen Energy. – 2018. – Vol. 43 (5). – P. 2913–2918. – DOI: 10.1016/j.ijhydene.2017.12.054.



14. Amorphous and nanocrystalline Fe-Ti prepared by ball-milling / L. Zaluski, P. Tessier, D.H. Ryan, C.B. Doner, A. Zaluska, J.O. Ström-Olsen, M.L. Trudeau, R. Schulz // Journal of Materials Research. – 1993. – Vol. 8 (12). – P. 3059–3068. – DOI: 10.1557/jmr.1993.3059.



15. Mushnikov N.V., Ermakov A.E., Uimin M.A. Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen // The Physics of Metals and Metallography. – 2006. – Vol. 102 (4). – P. 421–431. – DOI: 10.1134/s0031918x06100097.



16. Stepanov A., Ivanov E., Konstanchuk I. Hydriding properties of mechanical alloys Mg-Ni // Journal of the Less-Common Metals. – 1987. – Vol. 131. – P. 89–97. – DOI: 10.1016/0022-5088(87)90504-2.



17. Sun J.F., Zhang F.M., Shen J. Characterizations of ball-milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets // Materials Letters. – 2003. – Vol. 57. – P. 3140–3148. – DOI: 10.1016/S0167-577X(03)00011-9.



18. Effect of Co content on microstructure and mechanical properties of ultrafine grained WC-Co cemented carbide sintered by spark plasma sintering / K. Liu, Z.H. Wang, Z.B. Yin, L.Y. Cao, J.T. Yuan // Ceramics International. – 2018. – Vol. 44. – P. 18711–18718. – DOI: 10.1016/j.ceramint.2018.07.100.



19. Zhao Z.W. Microwave-assisted synthesis of vanadium and chromium carbides nanocomposite and its effect on properties of WC-8Co cemented carbides // Scripta Materialia. – 2016. – Vol. 120. – P. 103–106. – DOI: 10.1016/j.scriptamat.2016.04.024.



20. Microstructure and mechanical properties of new WC-Co base cemented carbide having highly oriented plate-like triangular prismatic WC grains / S. Kinoshita, T. Saito, M. Kobayashi, K. Hayashi // Journal of the Japan Society of Powder and Powder Metallurgy. – 2000. – Vol. 47 (5). – P. 526–533. – DOI: 10.2497/jjspm.47.526.



21. Nobuki T., Crivello J-C., Cuevas F. Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties // International Journal of Hydrogen Energy. – 2019. – Vol. 44. – P. 10770–10776. – DOI: 10.1016/j.ijhydene.2019.02.203.



22. He M., Wang J.Y., He R.G., Yang H.L. Effect of cobalt content on the microstructure and mechanical properties of coarse grained WC-Co cemented carbides fabricated from chemically coated composite powder // Journal of Alloys and Compounds. – 2018. – Vol. 766. – P. 556–563. – DOI: 10.1016/j.jallcom.2018.06.366.



23. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen // Kolloidchemie Ein Lehrbuch. – Berlin, Heidelberg: Springer, 1912. – P. 387–409. – DOI: 10.1007/978-3-662-33915-2_7.



24. Stokes A.R., Wilson A.J.C. The diffraction of X rays by distorted crystal aggregates // Proceedings of the Physical Society. – 1944. – Vol. 56. – P. 174–181. – DOI: 10.1088/0959-5309/56/3/303.



25. Phase transformations and change in TiNi intermetallic compound structure during destructive hydrogenation and recombination / T. Bratanich, O. Get’man, V. Dobrovol’skii, L. Kopylova, N. Krapivka, T. Permyakova, V. Skorokhod // Powder Metallurgy and Metal Ceramics. – 2006. – Vol. 45. – P. 582–587. – DOI: 10.1007/s11106-006-0122-x.



26. Ban Z.G., Shaw L.L. Synthesis and processing of nanostructured WC-Co materials // Journal of Materials Science. – 2002. – Vol. 37. – P. 3397–3403.



27. Berger S., Porat R., Rosen R. Nanocrystalline materials: a study of WC-based hard metals // Progress in Materials Science. – 1997. – Vol. 42 (1–4). – P. 311–320. – DOI: 10.1016/s0079-6425(97)00021-2.



28. Zhang F.L., Wang C.Y., Zhu M. Nanostructured WC/Co composite powder prepared by high energy ball milling // Scripta Materialia. – 2003. – Vol. 49. – P. 1123–1128. – DOI: 10.1016/j.scriptamat.2003.08.009.



29. Effects of fine WC particle size on the microstructure and mechanical properties of WC-8Co cemented carbides with dual-scale and dualmorphology WC grains / Q. Ding, Y. Zhenga, Z. Ke, G. Zhang, H. Wu, X. Xu, X. Lu, X. Zhu // International Journal of Refractory Metals and Hard Materials. – 2020. – Vol. 87. – P. 105166-1–105166-7. – DOI: 10.1016/j.ijrmhm.2019.105166.

Благодарности. Финансирование

Финансирование:

Результаты получены при выполнении комплексного проекта «Создание высокотехнологичного импортозамещающего производства полного цикла металлорежущих сложнопрофильных многогранных твердосплавных пластин для приоритетных отраслей промышленности» (соглашение о предоставлении субсидии от 27.11.2019 № 075-11-2019-036), реализуемого ИФПМ СО РАН при финансовой поддержке Минобрнауки России в рамках постановления Правительства РФ от 09.04.2010 № 218.

 

Благодарности:

Авторы выражают благодарность сотрудникам лаборатории физики наноструктурных функциональных материалов (ЛФНФМ) за помощь в приготовлении твердосплавных образцов и подготовку спеченных образцов к дальнейшим исследованиям.

Для цитирования:

Абдульменова Е.В., Кульков С.Н. Влияние механической активации порошка ВК-8 на свойства спеченных твердых сплавов // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 1. – С. 68–78. – DOI: 10.17212/1994-6309- 2021-23.1-68-78.

For citation:

Abdulmenova E.V., Kulkov S.N. Effect of mechanical activation of WC-based powder on the properties of sintered alloys. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 1, pp. 68–78. DOI:10.17212/1994-6309-2021-23.1-68-78. (In Russian).

Просмотров: 834