ОБРАБОТКА МЕТАЛЛОВ

УДК 539.432 + 539.389.1

ИССЛЕДОВАНИЕ ВЛИЯНИЯ СПОСОБА ОБРАБОТКИ На механические характеристики и микроструктуру материала марки м1

А.В. ГУСЬКОВ, канд. техн. наук, доцент Н.О. ДРАНЬКОВ, студент К.Е. МИЛЕВСКИЙ, канд. техн. наук, доцент (НГТУ, г. Новосибирск)

Статья поступила 10 октября 2012 года

Драньков **Н.О.** – 630092, г. Новосибирск, пр. К. Маркса, 20, Новосибирский государственный технический университет, e-mail: nikitadrankov@gmail.com

Рассмотрено влияние способа обработки, состоящего из прокатки, ударно-волнового и комбинированного нагружения, на механические характеристики материала М1 и микроструктуру с графическим представлением связей между механическими характеристиками и микротвердостью.

Ключевые слова: материал М1, предел прочности, предел текучести, ударно-волновое нагружение, прокатка, комбинированное нагружение.

Введение

Способы обработки металлов давлением можно разделить на низкоскоростные (прокатка, осадка и т. д.) и высокоскоростные. Соответственно, когда скорость деформации меньше скорости звука в данном материале, - это низкоскоростная обработка, а когда скорость деформации больше скорости звука в обрабатываемом материале, - это высокоскоростная обработка. Оба способа влияют на изменение механических свойств материала и для их определения используют испытание на растяжение, при котором до начала образования шейки создается линейное напряженно-деформированное состояние. Данная методика требует вырезки образцов из изделий и относится к разрушающему методу контроля. Существуют и неразрушающие методы контроля, один из которых - измерение твердости, для которого экспериментально получена зависимость между характеристиками прочности и твердостью [1]:

$$\sigma = k(HB), \tag{1}$$

где k – корреляционный коэффициент, зависящий от марки стали, HB – твердость. Используя данную зависимость, можно определить значения предела прочности $\sigma_{\rm p}$ и предела текучести $\sigma_{\rm T}$, не изготовляя и не испытывая на разрыв образцы из данного материала. При этом следует учитывать, что при низкоскоростном упрочнении изменение механических характеристик происходит за счет активной деформации зерен, а при высокоскоростном упрочнении изменения незначительны, так как все процессы протекают внутри зерна [2].

Цель данных экспериментальных исследований – установление зависимостей предела текучести и предела прочности от микротвердости H_V для процесса прокатки, взрывной обработки, а также комбинированной обработки (прокатка + ударно-волновое нагружение (УВ), УВ + прокатка) и установления соответствия между полученными значениями механических характеристик при одинаковых значениях микротвердости, полученной разными способами обработки. Так как данные зависимости известны для низкоскоростных способов обработки, то основное внимание при определении значений $\sigma_{\rm B}$ и $\sigma_{\rm T}$ уделялось высокоскоростному упрочнению.

Материал и методика эксперимента

В качестве материала для исследования выбран модельный пластичный материал – листовая медь марки М1 в состоянии поставки. Для

Рис. 1. Методика проведения эксперимента

определения зависимостей $H_V = f(\sigma_B)$ и $H_V = f(\sigma_T)$ нами предложена методика проведения эксперимента (рис. 1). Исходный лист подвергался термической обработке с целью снятия внутренних напряжений после предварительной обработки для восстановления изотропных свойств материала. В дальнейшем лист раскраивался на полосы. На каждой полосе проведены замеры твердости (по краям и в центре). Результаты замеров подтвердили, что значения твердости у всех пластин одинаковы. Далее, для проведения нагружения различными способами (прокатка, УВ нагружением и комбинированное нагружение), полосы раскраивались на полуфабрикаты в виде

брусков с размерами 20×10×100 (мм), которым были присвоены числовые обозначения.

Прокатка. Для обработки прокаткой (рис. 2, *a*) использовались подготовленные полуфабрикаты под номерами 1–3, 6–9, 13, 15–18. При прокатке деформация определяется по формуле

$$\varepsilon = [(h_0 - h_1)/h_0] 100 \%, \tag{2}$$

где h_0 – номинальная высота; h_1 – конечная высота.

Задаваясь рядом степеней деформации 10, 20, 30, 40, 50, 65, 75, 85, 90 %, по формуле (2) определялась величина h_1 , и до этой величины происходила раскатка образцов [3]. Полученные

Таблица 1

Ударно-волновое нагружение.

Результаты прокатки Номер 1,7 2.3 9 17 15 18 4, 13 8 6 16 заготовки 20 0 10 30 40 50 65 75 85 90 ε, % 8,9 6,2 5,3 4,5 1,3 0,89 8,0 7,1 3,0 2,2 h_1

данные о степенях деформации и номерах полуфабрикатов представлены в табл. 1.

Степень деформации є, равная 10 %, достигалась за один проход, остальные степени деформации были получены после многократных прокаток (например, $\varepsilon = 65 \%$ – за 16 проходов, $\varepsilon =$ = 90 % – за 24 прохода). После этого на прокатанных заготовках были сделаны замеры твердости HB и HRB (табл. 2). Также от каждого прутка были отрезаны образцы для изготовления микрошлифов.

Рис. 2. Схема обработки: a – прокатка; δ – ударно-волновое нагружение Для обработки ударно-волновым способом (рис. 2, б) использовались четыре заготовки: заготовки № 5, 10 обрабатывались с давлением 10 ГПа и использованием гексогена, а № 11, 14-с давлением 6 ГПа и использованием аммонита 6ЖВ; заготовки были

закреплены винтами на стальной подложке толщиной 40 мм. Так как использовались насыпные взрывчатые вещества (BB) с $\rho = 1,0$ г/см³, то была сделана картонная коробка по периметру подложки с таким условием, чтобы ее высота была на 10 мм выше уровня заготовок. Расположение прутков и ВВ обеспечивало отсутствие растекания материала. Полученная сборка заполнялась ВВ на высоту 10 мм над уровнем прутков. Вся сборка собиралась на столе во взрывной камере. Далее к готовой сборке подсоединялся детонирующий шнур с высоковольтным детонатором, и производился подрыв.

Комбинированое нагружение

а) Ударно-волновое нагружение + прокатка. Обработанные взрывом образцы № 10 и 11 в дальнейшем подвергались прокатке со степенью деформации є, равной 10 и 20 % соответственно.

б) Прокатка + ударно-волновое нагружение.

Подвергалась прокатанная заготовка со степенью деформации є, равной 20 %, полученной прокаткой (отрезанная от заготовки № 4; далее ее номер – № 12).

В дальнейшем на всех образцах была замерена твердость (табл. 2).

Проведение механических испытаний. Для проведения механических испытаний на установке Р-5 из всех заготовок (исходных, прокатанных, обработанных УВ) изготавливались

Таблица 2

				- I I		15	-				
Вид обработки	Отжиг	$\varepsilon = 10 \%$	$\varepsilon = 20 \%$	$\varepsilon = 30 \%$	$\epsilon = 40 \%$	$\varepsilon = 50 \%$	$\epsilon = 65 \%$	$\epsilon = 75 \%$	$\epsilon = 85 \%$	$\epsilon = 90 \%$	
Номер заготовки	1и7	2и3	4и13	8	6	9	01	15	16	18	
HB	46	76	83	89	92	95	100	106	110	_	
	УВ нагружение				Комбинированное нагружение						
Вид обработки	<i>P</i> = 10 ГПа		<i>P</i> = 6 ГПа		$\varepsilon = 20\% + P =$		$P = 10 \Gamma \Pi a +$		$P = 6 \Gamma \Pi a +$		
					= 10 ГПа		$+\epsilon = 10\%$		$+\epsilon = 20\%$		
Номер заготовки	5		14		12		10		11		
HB	81		74		87		85		92		

Результаты замеров тверлости после нагружения

CM

Вид		Прокатка									
обработки											
ε, %	Отжиг	$\varepsilon = 10 \%$	$\epsilon = 20 \%$	$\varepsilon = 30 \%$	$\varepsilon = 40 \%$	$\varepsilon = 50 \%$	$\epsilon = 65 \%$	$\epsilon = 75 \%$	ε = 85 %	$\epsilon = 90 \%$	
Номер											
заготовки	7	3	13	8	6	9	01	15	16	18	
H_{ν} , МПа	518,42	776,16	888,86	1019,2	1150,52	1151,5	1189,72	1250,48	1252,44	1274	
УВ нагружение				Комбинированное нагружение							
Вид обрабо	ид обработки $P = 10 \Gamma \Pi a$		Па Р	= 6 ГПа	ε = 20 % + P = 10 ΓΠa		Ta $P = 10$	$P = 10 \Gamma \Pi a + \varepsilon = 10 \%$		$P = 6 \Gamma \Pi a + \varepsilon = 20 \%$	
Номер загот	говки	5		14		12		10		11	
H_{ν} , МПа		892,78		808,5	10	065,26		928,06		1029	

Результаты замеров микротвердости

образцы согласно ГОСТ 1497 по 6 штук на каждый вид обработки. Испытания на разрыв производились на двух скоростях нагружения: 0,86 и 0,14 мм/с. На основе обработки результатов построены экспериментальные зависимости: $\sigma_{T} = f(\varepsilon)$ и $\sigma_{R} = f(\varepsilon)$ (рис. 3, *a*).

Металлографический анализ

Микротвердость измерялась на предварительно подготовленных и протравленных микрошлифах. Измерение проводились с шагом 300...400 мкм. Результаты измерения микротвердости представлены в табл. 3. Также был

a – предела прочности, предела текучести и микротвердости от степени деформации при прокатке; *б* – предела прочности, предела текучести и микротвердости от величины давления при ударно-волновом нагружении; *в* – предела прочности, предела текучести и микротвердости от величины давления и степени деформации при комбинированном нагружении; *г* – сравнение величины микротвердости при прокатке и УВ нагружении

проведен металлографический анализ структуры материла с использованием микроскопа «Неофот – 21».

Обсуждение результатов

Результаты механических испытаний на растяжение показали, что при прокатке отожженного материала до степени деформации 10 % резко возрастает предел текучести $\sigma_{\rm T}$ (почти в два раза), в то время как предел прочности $\sigma_{\rm B}$ увеличивается только на 13 %.

При УВ нагружении предел текучести $\sigma_{\rm T}$ возрастает на 70 %, а предел прочности $\sigma_{\rm B}$ – на 11 % по сравнению с отожженным образцом. При сравнении механических характеристик после комбинированного нагружения с характеристиками отожженного образца установлено, что $\sigma_{\rm T}$ увеличивается на 120 %, а $\sigma_{\rm B}$ – на 75 %.

Область пластических деформаций при комбинированном нагружении уменьшилась. Разрушение образцов происходит при $\varepsilon = 0,12...0,15$. После прокатки до степени деформации $\varepsilon = 10$ % и УВ нагружения разрушение образцов происходит при $\varepsilon > 0,3$.

По данным результатов определены средние значения всех величин, по которым построены графики зависимости предела прочности, предела текучести и микротвердости от степени деформации при прокатке (рис. 3, a), величины давления при ударно-волновом нагружении (рис. 3, δ), от величины давления и степени деформации при комбинированном нагружении (рис. 3, e). Так же был построен график сравнения микротвердости при прокатке и УВ нагружении (рис. 3, e).

На рис. 3, г представлены графики, на которых на кривую $\sigma_{T} = f(\varepsilon)$ для прокатки нанесены значения предела текучести $\sigma_{_{\rm T}}$ для УВ нагружения при 6 и 10 ГПа. Также на кривой $H_{V} = f(\varepsilon)$ для прокатки отмечены значения микротвердости Н_и для УВ нагружения при 6 и 10 ГПа. При анализе данной зависимости видно, что значения о, для УВ нагружения при 6 и 10 ГПа соответствуют значениям степени деформации при прокатке 12 и 18 %. При этих значениях степени деформации значения микротвердости равны 770 и 860 МПа соответственно. Однако при нанесении на кривую $H_{\nu} = f(\varepsilon)$ для прокатки значений микротвердости Н_и для УВ нагружения получаем, что значения микротвердости при прокатке отличаются от значений микротвердости при УВ нагружении и равны 810 и 900 МПа соответственно. Таким образом, в случае оценки предела текучести о, или предела прочности о, материала после УВ нагружения по зависимости $\sigma_{T} = f(H_{V})$ мы будем занижать значение микротвердости после прокатки.

Так же построены зависимости между пределом прочности и микротвердостью (рис. 4, a) и пределом текучести и микротвердостью (рис. 4, δ).

Анализ графиков показал, что прямые имеют разные углы наклона, а следовательно, имеют разные зависимости. Это говорит о том, что при УВ нагружении мы получаем микротвердость

Рис. 4. Графики зависимостей:

а – предела прочности от микротвердости; *б* – предела текучести от микротвердости

60

МАТЕРИАЛОВЕДЕНИЕ

материала выше, а степень его деформации меньше. Следовательно, после УВ нагружения, у материала остается большой запас по пластичности.

Анализ микроструктуры материала

Образцы для исследования микроструктуры материала изготавливались параллельно с образцами для динамических испытаний из того же исходного материала. При анализе микроструктуры исследуемого материала было замечено, что при степени деформации є, равной 30 %, происходит практически полный разворот зерен в направлении прокат-

ки. До 30 % деформации зерна практически не деформируются и по своим размерам близки к исходным (рис. 5). В дальнейшем происходит накопление деформации вдоль прокатки, изменение формы зерен, образование текстуры [4].

При сравнении структуры исходного и обработанного взрывом материала с давлением 10 и 6 ГПа (рис. 6) изменения в структуре при оптическом увеличении незаметны. Размеры и форма зерна сохраняются. Аналогичная картина нами наблюдалась и при исследовании стали Гадфильда, что подчеркивает наличие общих за-

кономерностей деформирования у разных материалов [5].

Микроструктура материала, деформированного с $\varepsilon = 20$ %, почти не отличается от структуры материала, обработанного УВ с P = 10 ГПа предварительно деформированного на такую же величину.

У материала со степенью деформации 20 % заметен лишь разворот зерен без их изменения, а у обработанного УВ с давление 6 ГПа и затем прокатанного с $\varepsilon = 20$ % наблюдается не столько разворот зерен, сколько их изменение (рис. 7).

При сравнении структуры материала со степенью деформации 10 % и материала, обработанного взрывом с давлением P = 10 ГПа, а затем прокатанного на 10 %, разница не обнаруживается.

Следовательно, можно сделать вывод, что обработка ударными волнами не изменяет или очень мало изменяет структуру материала, наблюдаемую в оптический микроскоп. Но вместе с этим существует увеличение прочности, твердости, следовательно, по структуре материала, обработанного ударными волнами, не всегда можно судить об его упрочнении.

№ 4 (57) 2012 61

CM

ОБРАБОТКА МЕТАЛЛОВ

CM

ОБРАБОТКА МЕТАЛЛОВ

Рис. 7. Сравнение структуры материала после прокатки и комбинированного нагружения

Выводы

1. При одном и том же пределе текучести $\sigma_{0,2}$ материала М1 после УВ нагружении и прокатки идет несоответствие значений микротвердости H_V , т. е. после УВ нагружения $H_V = 900$ МПа, а после прокатки $H_V = 860$ МПа. Так как разница невелика, то этим можно пренебречь.

2. При УВ нагружении структура материала мало изменяется, т. е. не происходит активной деформации зерен и они сохраняют свою геометрическую форму. На основании этого можно сделать вывод, что материал сохраняет характеристики пластичности, и при дальнейшем деформировании значения микротвердости могут увеличиваться.

3. После упрочнения материала его структура отличается – при прокатке имеет место изменение формы зерен и ориентация их вдоль направления прокатки, а при УВ нагружении этого не наблюдается.

4. Результаты экспериментов хорошо аппроксимируются линейной зависимостью (прямы-

МАТЕРИАЛОВЕДЕНИЕ

ми) между механическими характеристиками и микротвердостью для каждого вида обработки. Полученные зависимости имеют разный угол наклона прямых, а значит, имеют разную интенсивность изменения предел прочности $\sigma_{\rm B}$, предел текучести $\sigma_{0,2}$ от микротвердости H_V . Следовательно, коэффициент *k* из формулы (1) зависит от вида обработки.

Список литературы

1. Давыденков Н.Н. Избранные труды. В 2 т. Том 2. Механические свойства материалов и методы измерения деформаций. – Киев: Наукова думка, 1981. – 656 с.

2. *Дерибас А.А.* Физика упрочнения и сварка взрывом. – Новосибирск: Наука, 1980.

3. Воропаева М.В. Исследование влияния прокатки со сдвигом на структуру, свойства и термическую стабильность меди М1 / М.В. Воропаева, В.В. Пашинский, Е.Г. Пашинская // Сборник научных трудов SWorld. Материалы международной научнопрактической конференции «Современные проблемы и пути их решения в науке, транспорте, производстве и образовании. 2011». – Выпуск 4. Том 7. – Одесса: Черноморье, 2011. – 96 с.

4. Столяров В.В., Пашинская Е.Г., Бейгельзимер Я.Е. Влияние комбинированной деформации на структуру и свойства меди и титановых сплавов // Деформация и разрушение материалов. – 2009. – № 10. – С. 19–23.

5. Гуськов А.В., Драньков Н.О., Милевский К.Е. Исследование механических свойств стали Гадфильда при высокоскоростном нагружении // Деформация и разрушение материалов. – 2011. – № 3. – С. 39–41.

Research of influence of the way of processing on mechanical characteristics and microstructure of the material M1

A.V. Guskov, N.O. Drankov, K.E. Milevskiy

Influence of processing method (rolling, shock- wave and combined loading) on mechanical characteristics of metal M1 and microstructure, and deriving of the relation between $H_V = f(\sigma_B)$ and $H_V = f(\sigma_T)$ of the material depending on given types of processing are discussed.

Key words: material M1, tensile strength, yield strength, shock-wave loading, rolling, combined loading.