УДК 621.01

ИССЛЕДОВАНИЕ ВИБРОИЗОЛИРУЮЩИХ СВОЙСТВ СОСТАВНОГО ЗУБЧАТОГО КОЛЕСА

А.М. МЕДВЕДЕВ, канд. техн. наук, доцент, Г.В. ЛИТОВКА, доктор техн. наук, профессор, (Амурский государственный университет, г. Благовещенск)

Статья поступила 5 марта 2012 года

Медведев А.М. – 675027, г. Благовещенск, ул. Игнатьевское шоссе, 21, Амурский государственный университет, e-mail: design@amursu.ru

Исследуются пути снижения виброакустической активности механических приводов технологического оборудования.

Ключевые слова: технологическое оборудование, виброизоляция, составные зубчатые колеса.

Развитие современного машиностроительного оборудования связано, с одной стороны, с увеличением мощности и быстроходности механизмов, являющихся во многих случаях источниками интенсивного шума и вибраций, с другой — со все большими требованиями, предъявляемыми к динамическому качеству станка. Причинами вибрации конструкций станочного оборудования, передающейся на обрабатываемую заготовку и режущий инструмент, является работа зубчатых передач станочного оборудования. Перспективным является использование виброизолирующего эффекта в зубчатых передачах механических приводов металлорежущих станков.

Авторами были разработаны конструкции составных зубчатых колес с полной виброизоляцией зубчатого венца (рис. 1) [1]. Составное зубчатое колесо состоит из зубчатого венца 1 и разъемной в диаметральной плоскости ступицы, состоящей из двух частей 2 и 3, скрепленных между собой винтами 4, что гарантирует соединение от возможности поворота венца относительно ступицы в процессе эксплуатации. В качестве фиксирующих упругих элементов использованы ролики 5 оси, которые параллельны оси колеса и лежат на окружности разъема венца и ступицы, помещенные во втулки 6 и по торцам снабженные прокладками 7. Усилия, возникающие на рабочих поверхностях зубьев, передаются венцу 1. Колебания от зубчатого венца 1 проходят резиновую

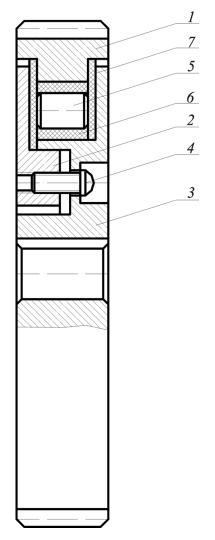


Рис. 1. Составное зубчатое колесо с полной виброизоляцией венца: I – зубчатый венец; 2, 3 – ступица; 4 – винт; 5 – ролик; 6 – втулка; 7 – прокладка

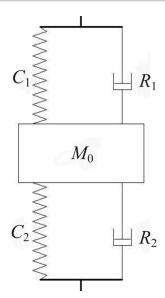


Рис. 2. Принципиальная схема виброизолирующего крепления составного зубчатого колеса с промежуточной массой

втулку 6 и прокладку 7, где и происходит их активное гашение. Конструкция разработанного составного зубчатого колеса позволяет варьировать диаметром и количеством роликов с целью настройки на противорезонанс системы, тем самым снижая ее виброакустическую активность. Совокупность втулки 6 и прокладок 7 создает многозвенную полностью виброизолированную систему. В результате упругих деформаций прокладок и втулок обеспечивается не только самоустановка зубчатого венца от действия возникающих в зацеплении динамических нагрузок, но их активное гашение.

Виброизолирующая втулка 6 и фиксирующий ролик 5 конструкции составного зубчатого колеса рассматриваются в качестве двухконечного механического звена. Считая величину промежуточной массы M_0 (масса фиксирующих роликов) переменным параметром, выясним, как ее изменение влияет на виброизоляцию составного колеса.

Коэффициент эффективности вибрационной защиты запишем в следующем виде [2]

$$U = 20 \lg \left| \frac{\bar{A}_a + Z_{\Phi} + \bar{B}_a + Z_{M} (\bar{C}_a Z_{\Phi} + \bar{D}_a)}{Z_{M} + Z_{\Phi}} \right|, \quad (1)$$

где

$$\overline{A}_{a} = 1 - \frac{\frac{\omega^{2}M}{C}}{1 + \frac{\omega^{2}R^{2}}{C^{2}}} + i \frac{\frac{\omega R}{C} \frac{\omega^{2}M}{C}}{1 + \frac{\omega^{2}R^{2}}{C^{2}}}; \quad \overline{B}_{a} = i\omega M; \qquad \times \left(1 + \frac{M_{0}M_{\phi}}{M + M_{\phi}}\right) - \frac{\omega^{2}M_{0}}{C} \left(1 + 2\frac{M_{M\phi}}{M_{0}} + \frac{\omega^{2}M_{M\phi}}{C}\right)^{2} + \frac{1}{2} \left(1 + \frac{M_{0}M_{\phi}}{C}\right)^{2} + \frac{1}{2} \left$$

$$\begin{split} & \bar{C}_{a} = \frac{\omega}{C} \left[2 \frac{\omega R}{C} \frac{1 - \frac{\omega^{2} M}{C} + \frac{\omega^{2} R^{2}}{C^{2}}}{\left(1 + \frac{\omega^{2} R^{2}}{C^{2}} \right)^{2}} + \right. \\ & + i \frac{2 \left(1 + \frac{\omega^{2} R^{2}}{C^{2}} \right) + \frac{\omega^{2} M}{C} \left(\frac{\omega^{2} R^{2}}{C^{2}} - 1 \right)}{\left(1 + \frac{\omega^{2} R^{2}}{C^{2}} \right)^{2}} \right]; \\ & \bar{D}_{a} = 1 - \frac{\frac{\omega^{2} M}{C}}{1 + \frac{\omega^{2} R^{2}}{C^{2}}} + i \frac{\frac{\omega R}{C} \frac{\omega^{2} M}{C}}{1 + \frac{\omega^{2} R^{2}}{C^{2}}}. \end{split}$$

где \bar{A}_a , \bar{B}_a , \bar{C}_a , \bar{D}_a – характеристические коэффициенты механического четырехполюсника; Z – механический импеданс; C – коэффициент жесткости; R – коэффициент сопротивления; M – масса; ω – угловая частота.

Ограничиваясь частным случаем симметричного рабочего элемента, так что $C_1 = C_2 = C_3$; $R_1 = R_2 = R$, воспользуемся коэффициентами механического четырехполюсника. При условии, что механизм (зубчатый венец) и фундамент (ступица зубчатого колеса) могут рассматриваться как сосредоточенные массы M и $M_{\rm th}$, используем для вычисления коэффициента эффективности вибрационной защиты формулу (1). После подстановки в нее значений $\overline{A}_a = \overline{D}_a, B_a, \overline{C}_a$ и при использовании обозначения

$$M_{\rm M} = \frac{M M_{\rm \Phi}}{M + M_{\rm \Phi}} \tag{2}$$

коэффициент эффективности вибрационной защиты может быть записан в развернутом виде:

$$U = 10 \lg \left(1 + \frac{1}{\left(1 + \frac{\omega^2 R^2}{C^2} \right)^2} \right) \left\{ \left[\left(1 + \frac{\omega^2 R^2}{C^2} \right) \times \right] \right\}$$

$$\times \left(1 + \frac{M_0 M_{\Phi}}{M + M_{\Phi}}\right) - \frac{\omega^2 M_0}{C} \left(1 + 2 \frac{M_{M\Phi}}{M_0} + \frac{\omega^2 M_{M\Phi}}{C}\right)^2 +$$

$$+\frac{\omega^{2}R^{2}}{C^{2}}\frac{\omega^{4}M_{0}^{2}}{C^{2}}\left(1+2\frac{M_{M\Phi}}{M_{0}}\right)^{2}-\left(1+\frac{\omega^{2}R^{2}}{C^{2}}\right)^{2}+$$

$$+4\frac{\omega^{2}M_{0}}{C}\frac{\omega^{2}M_{M\Phi}}{C}\left[1+\frac{M_{0}}{M+M_{\Phi}}-\frac{\omega^{2}M_{0}}{C}\times\right]$$

$$\times\left(1+2\frac{M_{M\Phi}}{M_{0}}\right)\right].$$
(3)

При достаточно больших ω можно пользоваться вместо записи (3) следующей приближенной формулой:

$$U \approx 40 \lg \frac{\omega}{R} \sqrt{M_0 M_{\text{M}\oplus}} \ . \tag{4}$$

В области высоких частот коэффициент эффективности вибрационной защиты, обеспечиваемый виброизолятором с промежуточной массой, имеющей безынерционный упругий подвес с вязким трением, возрастает на 12 дБ при увеличении частоты на октаву. При отсутствии трения (R = 0).

$$U = 20 \lg \left| 1 + \frac{M_0}{M + M_0} + \frac{\omega^2 M_0}{C} \frac{\omega^2 M_{\text{M}\Phi}}{C} - \frac{\omega^2 M_0 + 2M_{\text{M}\Phi}}{C} \right|.$$
 (5)

При достаточно больших ω

$$U \approx 80 \lg \omega \sqrt[4]{\frac{M_0 M_{\text{M}\Phi}}{C}} . \tag{6}$$

Коэффициент эффективности вибрационной защиты в области высоких частот составляет 24 дБ на октаву.

Корнями многочлена, стоящего внутри скобок выражения (5), определяются частоты λ_1 и λ_2 свободных колебаний системы (рис. 3).

Обозначая
$$\omega \sqrt{\frac{M}{C_a}} = \eta \left(\text{ здесь } C_a = \frac{C}{2} \right)$$
, запи-

шем частотное уравнение в виде

$$\eta^{4} - 2\eta^{2} \left(1 + \frac{M}{M_{\Phi}} + 2\frac{M}{M_{0}} \right) + 4 \left(\frac{M}{M_{\Phi}} + \frac{M}{M_{0}} + \frac{M}{M_{\Phi}} \frac{M}{M_{0}} \right) = 0 .$$
 (7)

Отсюда

$$\eta_{1,2}^{2} = 1 + \frac{M}{M_{\Phi}} + 2\frac{M}{M_{0}} \pm \sqrt{\left(1 - \frac{M}{M_{\Phi}}\right)^{2} + 4\frac{M}{M_{0}^{2}}}; \quad (8)$$

$$\lambda_{1,2}^{2} = \frac{C}{2M}\eta_{1,2}^{2} = \frac{C}{M_{0}} + \frac{C}{2M_{M\Phi}} \pm$$

$$\pm \sqrt{\left(\frac{C}{M_0} + \frac{C}{2M_{M\Phi}}\right)^2 - \frac{C}{M_0} \frac{C}{M_{M\Phi}} - \frac{C}{M} \frac{C}{M_{\Phi}}}.$$
 (9)

Приближенно

$$\lambda \approx C \frac{M_0 + M + M_{\Phi}}{2MM_{\Phi} + M_0 \left(M + M_{\Phi}\right)}.$$
 (10)

Обычно промежуточная масса фиксирующего ролика M_0 мала по сравнению с массой обода составного зубчатого и массой ступицы. При этом условии

$$\lambda_1^2 = \frac{C}{2M_{\text{M}\Phi}}; \ \lambda_2^2 = 2\frac{C}{M_0}.$$
 (11)

Малая промежуточная масса фиксирующего ролика почти не оказывает влияния на низшую частоту λ₁ свободных колебаний системы (рис. 3). Этой частоте соответствуют, главным образом, колебания масс M и $M_{\scriptscriptstyle ф}$ относительно

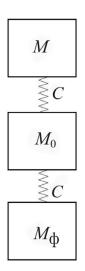


Рис. 3. Простейшая колебательная система, возникающая при установке зубчатого венца массы M на ступице $M_{\rm d}$, через посредство виброизолятора с промежуточной массой, не обладающего трением

друг друга. Что касается частоты λ_2 , то она определяется почти исключительно колебаниями промежуточной массы относительно масс M и $M_{\dot{\Phi}}$.

При
$$M_0=0,~\lambda_1=\sqrt{\frac{C}{2M_{\rm M}\Phi}}$$
 , а $\lambda_2\to\infty$. В ре-

зультате получается система с одной собственной частотой (λ_1) .

При угловых частотах возмущающей силы, совпадающих с определяемыми формулой (9) собственными частотами λ_1 и λ_2 , коэффициент эффективности вибрационной защиты (8) стремится к минус бесконечности.

Корни уравнения $U(\omega) = 0$ обращают величину внутри скобок (5) в минус либо плюс единицу. Значения квадратов этих корней, перенумерованных в порядке их возрастания, будут:

$$\omega_{1}^{2} = \frac{C}{M_{0}} + \frac{C}{2M_{M\phi}} - \sqrt{\left(\frac{C}{M_{0}} + \frac{C}{2M_{M\phi}}\right)^{2} - \frac{C^{2}}{MM_{M\phi}}};$$

$$\omega_{11}^{2} = \frac{C}{M_{0}} + \frac{C}{2M_{M\phi}} - \frac{C}{2M_{M\phi}} - \frac{C}{M_{0}} + \frac{C}{2M_{M\phi}} - \frac{C^{2}}{MM_{M\phi}} \left(1 + 2\frac{M + M_{\phi}}{M_{0}}\right);$$

$$\omega_{111}^{2} = \frac{C}{M_{0}} + \frac{C}{2M_{M\phi}} + \frac{C}{2M_{M\phi}} + \frac{C}{M_{0}} + \frac{C}{2M_{M\phi}} - \frac{C^{2}}{MM_{M\phi}} \left(1 + 2\frac{M + M_{\phi}}{M_{0}}\right);$$

$$\omega_{1V}^{2} = \frac{C}{M_{0}} + \frac{C}{2M_{M\phi}} + \frac{C}{2M_{M\phi}} + \frac{C}{2M_{M\phi}} + \frac{C}{2M_{M\phi}} + \frac{C}{2M_{M\phi}} + \frac{C}{2M_{M\phi}} - \frac{C^{2}}{MM_{M\phi}}.$$

$$(12)$$

Вид кривой коэффициента эффективности вибрационной защиты (5), как функции безразмерного аргумента η, представлен на рис. 4.

Значения корней η_1 η_{11} , η_{111} η_{1V} получаются соответственно из $\omega_1,\,\underline{\omega_{11},\,\omega_{111}},\,\omega_{1V}$ умножением последних на $\sqrt{\frac{2M}{C}}$. При $\omega = 0$ коэффициент эффективности вибрационной защиты

$$U = 20 \lg \left(1 + \frac{M_0}{M + M_{\Phi}} \right). \tag{13}$$

Таким образом, U положителен, но при малой величине отношения $\frac{M_0}{M+M_{
m th}}$ весьма неве-

лика. Участками, где коэффициент эффективности вибрационной защиты (5) больше нуля, являются $0 < \omega < \omega_1; \omega_{11} < \omega < \omega_{111}; \omega < \omega_{1V}$

На втором из этих участков коэффициент эффективности вибрационной защиты (5) имеет экстремум при $\omega^2 = \frac{C}{M_0} + \frac{C}{2M_{\odot}}$, причем его

экстремальное значение

$$U_e = 20 \lg \left[\frac{M_{\text{M}\phi}}{M_0} + \frac{M_0}{4M_{\text{M}\phi}} \left(\frac{M - M_{\phi}}{M + M_{\phi}} \right)^2 \right]. \quad (14)$$

Если $M = M_{ch}$, то

$$U_e = 20 \lg \left[\frac{M_{\text{M}\phi}}{M_0} \right] = 20 \lg \left[\frac{M}{2M_0} \right]. \tag{15}$$

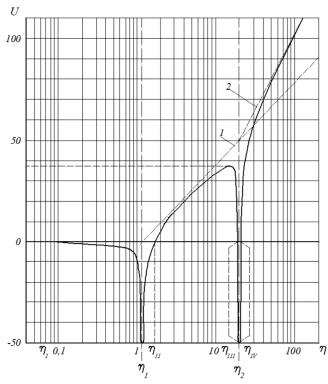


Рис. 4. Вид кривой коэффициента эффективности вибрационной защиты и способ ее приближенного построения:

1 – прямая имеет уклон 12 дБ на октаву; 2 -уклон 24 дБ на октаву

Левее указанного экстремума на кривой, рис. 4, расположен участок, характеризующийся возрастанием коэффициента эффективности вибрационной защиты примерно на 12 дБ с увеличением частоты на октаву. Его существование обусловлено тем, что в соответствующем интервале частот влияние на коэффициент эффективности вибрационной защиты оказывает последнее слагаемое из стоящих внутри скобок выражения (5).

На участках $\omega_1 < \omega < \omega_{11}$ и $\omega_{111} < \omega < \omega_{1V}$ коэффициент эффективности вибрационной защиты (5) отрицателен. Чем больше промежуточная масса, тем меньше частота $\omega_{_{1V}}$, определяющая нижнюю границу области высоких частот, где достигается наибольшая эффективность виброизоляции.

В области высоких частот, как это следует из (6), увеличение промежуточной массы в n раз дает прибавку коэффициенту эффективности вибрационной защиты, равную

$$\Delta U \approx 20 \lg n \text{ (дБ)}.$$
 (16)

В то же время нижняя граница указанной области отодвигается с увеличением M_0 в сторону низких частот. Это сопровождается сокращением и смещением влево остальных областей положительной и отрицательной коэффициента эффективности вибрационной защиты, так как корни (12) сближаются и уменьшаются. Наибольшее значение (14) коэффициента эффективности вибрационной защиты внутри промежутка $\omega_{11} < \omega < \omega_{111}$ снижается. В случае, когда $M = M_{\phi}$, указанное снижение составляет

$$\Delta U = 20 \lg n. \tag{17}$$

Сравнительный анализ спектрограмм шума показал, что характер амплитудно-частотного спектра составных зубчатых колес не существенно отличается от спектра зубчатой передачи серийного исполнения. Максимальное снижение до 5...14 дБ отмечено на 6 и 7 гармонике зубцовой частоты. Уровень звука зубчатой передачи снижен на 5 дБА, а шум привода на 3 дБА.

Результаты экспериментальных исследований составного зубчатого колеса показали эффективность использования разработки для виброизоляции и демпфирования рамы и присоединенных конструкций от виброакустической нагрузки, возникающей в зубчатых передачах. По абсолютной величине уровни звукового давления, зарегистрированные при испытаниях составных зубчатых колес для отдельных зубцовых частот, были в 2-3 раза ниже, чем при испытаниях серийных передач, что соответствует 6...10 дБ в относительных логарифмических единицах. Расчет спектра собственных частот позволит варьированием геометрических характеристик зубчатого колеса спроектировать безрезонансные режимы работы зубчатой передачи при максимальной виброизолирующей способности.

Список литературы

1 *A.c.* № 1551913 СССР, МКИ5 F 16 H 55/17, 55/14. Составное зубчатое колесо / А.М. Медведев, Н.Л. Суханов, А.В. Бушманов А.С. Чурилин. -№ 4424362/25-28; заявл.12.05.88, опубл. 23.03.1990, Бюл. № 11. – С. 140.

2. Клюкин И.И. Борьба с шумом и вибрацией на судах. – Л.: Судостроение, 1982. – 256 с.

Research of vibroisolation properties compound cogwheel

A.M. Medvedev, G.V. Litovka

The article ways of decrease in vibrating activity of mechanical drives of the process equipment are investigated.

Key words: process equipment, vibroisolation, compound cogwheel.