Analysis and data processing systems

ANALYSIS AND DATA PROCESSING SYSTEMS

Print ISSN: 2782-2001          Online ISSN: 2782-215X
English | Русский

Recent issue
№4(96) October - December 2024

Application of the wavelet transform and genetic algorithms for tuning automatic regulators of distributed generators

Issue No 2 (63) April - June 2016
Authors:

Yu.N. BULATOV,
A.V. KRYUKOV
DOI: http://dx.doi.org/10.17212/1814-1196-2016-2-7-22
Abstract
Recently, requirements on the operation of electric power systems (EPS) aimed at improving the reliability of power supply to the consumer, power quality and energy efficiency have increased. To satisfy these requirements intelligent network technologies (Smart Grid) which allow the most efficient use of energy resources have purposefully been introduced. The implementation of these requirements is based on the deliberate introduction of smart grids technologies (Smart Grid) which allow the most efficient use of energy resources.

The Smart Grid concept envisages the creation of a developed system of automatic control of EPS modes on the basis of active devices and distributed generators (DG). To provide their effective operation it is necessary to solve the problem of optimal tuning of automatic exciting regulators (AER) and automatic speed regulators (ASR) of these generators

The article describes the methods of using the wavelet transform and genetic algorithms (GA) for consistent tuning of AERs and ASRs of distributed generators operating in the railway power supply system (RPSS). It shows the efficiency of the wavelet transform technology in separating the noise of the regulator used in identification and reception as well as in obtaining the DG experimental structural and mathematical model using frequency transfer functions. The proposed adaptive GA makes it possible to solve the problem of finding optimal coefficients of AER and ASR control taking into account their cross effect. The described algorithms are implemented in the MATLAB language in a specialized software package designed for the EPS identification and optimization of AER and ASR generator settings.

The computer simulation results obtained on the RPSS model with DGs in MATLAB show the efficiency of the proposed method which provides the necessary stability margin and good damping of electromechanical oscillations in the system.
Keywords: electric power systems; distributed generators, wavelet transform, identification, optimization of automatic regulator settings, genetic algorithms, automatic exciting regulator, automatic speed regulator,harmonized settings

References
1. Fortov V.E., Makarov A.A., eds. Kontseptsiya intellektual'noi elektroenergeticheskoi sistemy Rossii s aktivno-adaptivnoi set'yu [The concept of intellectual power system of Russia with actively adaptive network]. Moscow, FSK EES Publ., 2012. 235 p.

2. Bulatov Yu.N., Kryukov A.V., Chan Zyui Khyng. Setevye klastery v sistemakh elektrosnabzheniya zheleznykh dorog [Network clusters in railway power supply systems]. Irkutsk, ISTU Publ., 2015. 205 p.

3. Bulatov Yu.N. Metodika soglasovannoi nastroiki avtomaticheskikh regulyatorov vozbuzhdeniya i chastoty vrashcheniya generatorov elektrostantsii. Avtoref. diss. kand. tekhn. nauk [The methodology of the harmonized settings of automatic controllers of excitation and speed of generator power plants. Author's abstract of PhD eng. sci. diss.]. Irkutsk, 2012. 22 p.

4. Daubechies I. Ten lectures on wavelets. Philadelphia, PA, Society for Industrial and Applied Mathematics, 1992. 357 p. (Russ. ed.: Dobeshi I. Desyat' lektsii po veivletam. Moscow, RKhD Publ., 2001. 464 p.).

5. Proskuryakov A.Yu., Belov A.A., Kropotov Yu.A. Algoritmy avtomatizirovannykh sistem ekologicheskogo monitoringa promyshlennykh proizvodstv [Algorithms of the automated systems of environmental monitoring industrial productions]. Moscow, Berlin, Direkt-Media Publ., 2015. 121 p.

6. Holland J.H. Adaptation in natural and artificial systems. Cambridge, MA, MIT Press, 1992. 211 p.

7. Goldberg D.E. Simple genetic algorithms and the minimal deceptive problem. Genetic Algorithms and Simulated Annealing. Los Altos, CA, Morgan Kauffman, 1987, ch. 6, pp. 74–88.

8. Goldberg D.E. Genetic algorithm in search, optimization and machine learning. Reading, MA, Addison-Wesley Longman Publ., 1989. 322 p.

9. Saad M.S., Jamaluddin H., Darus I.Z.M. Implementations of PID-controller tuning using differential evolution and genetic algorithm. International Journal of Innovate Computing, Information and Control, 2012, vol. 8, no. 11, pp. 7761–7779. Available at: http://www.ijicic.org/ijicic-11-07073.pdf (accessed 06.06.2016)

10. Chen Y., Ma Y., Yun W. Application of improved genetic algorithm in PID controller parameters optimization. Telkomnika, 2013, vol. 11, no. 3, pp. 1524–1530. Available at: http://www.iaesjournal.com/online/index.php/TELKOMNIKA/article/viewFile/2301/pdf (accessed 06.06.2016)

11. Sabanin V.R., Smirnov N.I, Repin A.I. Modifitsirovannyi geneticheskii algoritm dlya zadach optimizatsii v upravlenii [Modified genetic algorithm for optimal control problems]. Exponenta Pro. Matematika v prilozheniyakh, 2004, no. 3–4 (7–8), pp. 78–85.

12. Jaen-Cuellar A.Y., Romero-Troncoso R. de J., Morales-Velazquez L., Osornio-Rios R.A. PID-controller tuning optimization with genetic algorithms in servo systems. International Journal of Advanced Robotic Systems, 2013, vol. 10, p. 324. doi: 10.5772/56697

13. Ayman A.A. PID parameters optimization using genetic algorithm technique for electrohydraulic servo control system. Intelligent Control and Automation, 2011, no. 2, pp. 69–76. doi: 10.4236/ica.2011.22008

14. Slavov T., Roeva O. Application of genetic algorithm to tuning a PID controller for glucose concentration control. WSEAS Transactions on Systems, 2012, vol. 11, no. 7, pp. 223–233. Available at: http://www.wseas.org/multimedia/journals/systems/2012/55-286.pdf (accessed 07.06.2016)

15. Dunaev M.P., Kutsyi N.N., Luk'yanov N.D. Parametricheskaya optimizatsiya sistemy upravleniya nasosnoi stantsiei s pomoshch'yu geneticheskogo algoritma [Parametric optimization of control systems pumping station by the genetic algorithms]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. BaumanaScience and Education of the Bauman MSTU, 2014, no. 8, pp. 194–205. doi: 10.7463/0514.0721172

16. Bulatov Yu.N., Ignat'ev I.V. Optimizatsiya koeffitsientov regulirovaniya sistemy ARChM s ispol'zovaniem geneticheskogo algoritma [Optimization of the coefficients of control system ARFP using genetic algorithm]. Sovremennye tekhnologii. Sistemnyi analiz. ModelirovanieModern technology. System analysis. Modeling, 2009, no. 1 (21), pp. 150–153.

17. Trukhanov K.A., Popov D.N. Vybor optimal'nykh parametrov gidroprivoda ventilyatora dlya sistemy okh-lazhdeniya dvigatelya transportnogo sredstva [Selection of the optimum parameters for the hydraulic drive of a fan of the vehicle’s engine cooling system]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. BaumanaScience and Education of the Bauman MSTU, 2013, no. 7, pp. 91–100. doi: 10.7463/0713.0590873

18. Sorokin D.V. Vybor nastroek ARV generatorov slozhnoi energosistemy na osnove primeneniya geneticheskogo algoritma i metodov modal'nogo analiza. Avtoref. diss. kand. tekhn. nauk [The choice of settings ARE generators complex power system on the basis of application of genetic algorithm and modal analysis methods. Author's abstract of PhD eng. sci. diss.]. St. Petersburg, 2009. 24 p.

19. Michalewicz Z. Genetic algorithms + data structures = evolution programs. Berlin, Heidelberg, SpringerVerlag, 1996. 387 p.

20. Eremeev A.V. Razrabotka i analiz geneticheskikh i gibridnykh algoritmov dlya resheniya zadach diskretnoi optimizatsii. Avtoref. diss. kand. fiz.-mat. nauk [Development and analysis of genetic and hybrid algorithms for solving problems of discrete optimization. Author's abstract of PhD phys. and math. sci. diss.]. Omsk, 2000. 16 p.

21. Bulatov Yu.N., Ignat'ev I.V. Programmnyi kompleks dlya identifikatsii elektroenergeticheskikh sistem i optimizatsii koeffitsientov stabilizatsii avtomaticheskikh regulyatorov vozbuzhdeniya [Software complex for identification of electrical power systems and optimization of the coefficients of the stabilization of automatic excitation regulators]. Sistemy. Metody. TekhnologiiSystems. Methods. Technologies, 2010, no. 4 (8), pp. 106–113.

 
Views: 4841