Abstract
This paper describes one of the tasks of constructing the model used in the search for energy-efficient modes of non-ferrous smelters, in particular, the production of alumina which is a raw material for aluminum electrowinning. Alumina production results in high costs of electric and heat power. One of the technical methods of energy-efficient modes of search is the production processmodeling which is a continuous, closed, and inertial processhaving properties of non-linearity, which makes it impossible to build adequate models based on statistical data and requires modeling the process by mass balance equations. Here we give the differential equation used for modeling which describes the dynamics of the transition of Аl2O3to the undissolved state. The equation contains the reaction ratecoefficient which depends on three continually changing parameters: the decomposition process temperature, the reagent concentration and the surface area of the seed crystal. We describe the problem solution of determining the decomposition ratecoefficient of the solution through the use of fuzzy analysis as the values of the parameters listed above at any given point in time cannot be accurately determined. In the course of evaluations of each of the three parameters that affect the reaction rate, the ranges of acceptable values were determined as well as the values that best characterize this therm and the parameter values with 0 membership of this therm.We propose function types and formulae of the membership in these ranges. We describe obtaining the numerical value of the desired coefficient of the solution decomposition rate for which we performed the composition by the three parameters and defasification of results calculated using the formula of the mass center. In conclusion, we present the main results simplifying the calculation of the desired coefficient of the differential equation.
Keywords: Modeling, hydro-chemical process, differential equation, reaction ratecoeffi-cient,multiparameter dependence, fuzzy logic, membership functions, composi-tion,defasification
References
1. Zaytseva N.M. Efficiency of the determined model of power consumption by nonlinear closed slow-response production. Applied Mechanics and Materials, 2015, vol. 770, pp. 561–565. 2. Zaytseva N.M. Increase of energy efficiency of alumina production on the basis of process modeling. Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems, (MEACS), Tomsk, Russia, 2015, pp. 1–5. 3. Berkh V.I., Krasnopol'skii E.D. Matematicheskoe opisanie kinetiki razlozheniya alyuminatnogo rastvora [The mathematical description of the aluminate solution decomposition kinetics]. Tsvetnye metally – Non-ferrous metals, 1971, no. 11, pp. 34–37. 4. Teslya V.G., Volokhov Yu.A. Kinetika aglomeratsii kristallov gidroksida alyuminiya pri razlozhenii alyuminatnykh rastvorov [The kinetics of agglomeration of the crystals of aluminum hydroxide decomposition of aluminate solutions]. Tsvetnye metally – Non-ferrous metals, 1989, no. 10, pp. 62–64. 5. Dewhurst L. Development of a Bayer plant model. Light metals. San Francisco, Nabalco Pty, 1994, pp. 1231–1236. 6. Zadeh L.A. Fuzzy sets. Information and Control, 1965, vol. 8, pp. 338–353. 7. Zаdе L. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii [The concept of a linguistic variable and its application to the adoption of approximate solutions]. Moscow, Mir Publ., 1976. 165 p. 8. Kaufmann А. Introduction à la théorie des sous-ensembles flous à l'usage des ingénieurs (fuzzy sets theory). Paris, Masson, 1977 [Introduction to the theory of fuzzy subsets] (Russ. ed.: Kofman A. Vvedenie v teoriyu nechetkikh mnozhestv. Moscow, Mir Publ., 1982. 432 p.). 9. Bogatyrev L.L., Mаnusоv V.Z., Sodnomdorzh D. Matematicheskoe modelirovanie rezhimov elektroenergeticheskikh sistem v usloviyakh neopredelennosti [Mathematical modeling of electric power systems under uncertainty]. Ulan-Bаtоr, MSTU Publ., 1999. 348 p. 10. Кruglоv V.V., Dli М.I., Golunov R.Yu. Nechetkaya logika i iskusstvennye neironnye seti [Fuzzy logic and artificial neural networks]. Мoscow, Fizmatlit Publ., 2001. 224 p. 11. Guts A.K. Matematicheskaya logika i teoriya algoritmov [Mathematical logic and theory of algorithms]. Omsk, Nasledie. Dialog-Sibir' Publ., 2003. 108 p. 12. Yakh"yaeva G.E. Nechetkie mnozhestva i neironnye seti [Fuzzy sets and neural networks]. Moscow, Binom Publ., 2006. 316 p. 13. Kruglov V.V., Dli М.I. Intellektual'nye informatsionnye sistemy: komp'yuternaya podderzhka sistem nechetkoi logiki i nechetkogo vyvoda [Intelligent information systems: computer support systems of fuzzy logic and fuzzy inference]. Moscow, Fizmatlit Publ., 2002. 256 p. 14. Pivkin V.Ya., Bakulin E.P., Koren'kov D.I. Nechetkie mnozhestva v sistemakh upravleniya [Fuzzy sets in control systems]. Novosibirsk, NSU Publ., 2006. 40 p. 15. Popоv А.А. Regressionnoe modelirovanie na osnove nechetkikh pravil [Regression modeling based on fuzzy rules]. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta – Transaction of scientific papers of the Novosibirsk state technical university, 2000, no. 2 (19), pp. 49–57.