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Abstract

Gross domestic product is one of the most important indicators of the national accounts system.
It characterizes the final result of productive activity of domestic economic units and measures the
value of goods and services produced by these units in the country for a certain period of time for
final use. The paper considers an algorithm for constructing a linear stationary model in terms of the
state space for describing behaviour and predicting labour productivity state depending on the capital-
labour ratio and labour costs, instead of describing the object given by the three-factor non-linear
Cobb-Douglas model. In addition to a general construction of a dynamic model the algorithm in-
cludes the description of the procedures in the form of recursive formulae allowing calculation of
variance magnitudes for the dynamic noise, the measuring system noise and the initial state of the
investigated object behaviour on the basis of statistical time series data related to labour productivity.
An example shows that the proposed model provides more efficient prediction estimates of labour
productivity values compared with the prediction estimates calculated using a three-factor non-linear
regression model. The numerical calculations of the accuracy of prediction estimates were made using
an absolute percentage error and the Teil formula for both the three-factor Cobb-Douglas model and
the model in the form of the state space. The calculations showed more accurate prediction estimates
and more adequate filtering estimates for the model in terms of the state space.

Keywords: Cobb-Douglas model, three-factor model, dynamic model, state space, noise vari-
ance, Kalman filter, absolute percentage error, Teil formula

INTRODUCTION

In macroeconomic interpretation the gross domestic product (GDP) is one of
the most significant indicators in the system of national accounts, it characterizes
the final result of the productive activity of economic units-residents and measures
the cost of goods and services produced in the country for a certain period of time
by these units for the final use. The level of economic development of a country
and general welfare of the nation depend on GDP.

" Received 22 February 2018.
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However, a more qualitative and accurate measure showing the material pros-
perity of the citizens of any country compared to GDP is the GDP calculated per
capita. Therefore, the study of GDP volume and dynamics using mathematical
models is an important subject of statistical analysis.

However, a more qualitative and accurate measure showing the material pros-
perity of the citizens of any country compared to GDP is the GDP calculated per
capita. Therefore, the study of GDP volume and dynamics using mathematical
models is an important subject of statistical analysis.

For this purpose it is necessary to solve at least two problems: the first is to
determine the

dependence of the GDP on the most significant factors to get a high enough
adequacy with statistical data; the second is to construct efficient GDP prediction
estimates which would allow predicting economic development of the country for
the years to come.

For this purpose it is necessary to solve at least two problems: the first is to
determine the dependence of the GDP on the most significant factors to get a high
enough adequacy with statistical data; the second is to construct efficient GDP pre-
diction estimates which would allow predicting economic development of the
country for the years to come.

To solve the first problem, the significant factors are: the amount of capital
assets in production and the number of employees engaged in the production. So
for US manufacturing industry of 30-s the economists Ch. Cobb and P. Douglas
constructed the two-factor nonlinear regression dependence for the industrial pro-
duction yield [1]:

Y=A4-K% [7*, (1)

where Y is the industrial production yield in terms of cost; L is the number of
employees engaged in production; K is the amount of capital assets used in pro-
duction; A4, o are the model parameters determined by statistical data.

In this case, the scale parameter A characterizes the model's degree of uncer-
tainty from the point of view of completeness of the factors affecting an yield vari-
able. It is noted in [1] that the alue of this parameter is close to 1, that suggests that
the capital-labor ratio and the number of employees factor sufficiently accurately
determine the production yield.

At the same time, the author of [1] for the purpose of decreasing the degree of
uncertainty of the model (1) proposed to include in the model the new factor - the
labour cost of the workers engaged in the economy. Using such factor in the model
is indeed very important owing to the fact that salaries are the main incentive for
employees to work. As a result, the author of [1] proposed a new formula in the
form of a three-factor nonlinear regression dependency:

o p
Lo(ST(S)
L L L

where S is the new factor characterizing the labor cost of workers engaged in the

economy; A" is the new scale factor; o is the elasticity coefficient for the capital-
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labor; B is the elasticity coefficient for the workers labor cost function. Other vari-

ables of expression (2) are explained above.

The author of [1] noted that formulae (1) and (2) do not always adequately re-
flect the true dependence of labor productivity on the capital-labor ratio and the
workers’ labour cost. For example, in the field of education other approaches and
formulae based on other factors should be used. In this paper, we would like to
mention two more drawbacks in models (1) and (2): first, these models are based
on statistical data that are random, and the GDP calculations can be distorted; sec-
ondly, it is not possible to use these formulae for calculating the industrial produc-
tion yield prediction estimates because of the regression formulae nonlinearity and
the need for accurate calculations of predicted values for other factors included in
the formulae (1) and (2).

To solve the second problem, concerning calculation of the labour productivi-
ty prediction estimate, we propose in this paper to use linear stationary models in
terms of state space (SS). Therefore, the authors describe an algorithm for con-
structing the dynamic models in terms of SS on the basis of statistical data taking
into account stochastic nature of all factors presented in the three-factor nonlinear
regression model for calculation of the prediction estimates and the most reliable
filtered estimates for the labour productivity.

It is practically not possible to make absolutely accurate prediction estimates
for TS values. Therefore, an important task is to study the accuracy characteristics
of prediction and filtered estimates for various types of models. The reliability of
the chosen model to predict future TS values is assessed by periodic comparison of
actual and predicted values, and by possibility of adjusting the prediction estimates
for TS. The selected model type should provide the most accurate prediction esti-
mate, as only in this case, the prediction estimate would be useful. Criteria for
evaluating the accuracy of predicted TS values on the basis of different model
types have to consider the predicted values scatter. The predicted values scatter is
determined by the difference between the actual observed values and prediction
estimates values calculated on the basis of the considered models.

Degrees of reliability and quality of TS values prediction estimates are calcu-
lated using different indicators. One of such quality indicators is the absolute per-
centage error (APE):

X — X

APE = 100 %, 3)

X

where x; is the real actual TS value; X is the predicted TS value.

Error coefficient for the predicted estimates values as compared with the actu-
al TS values can also be calculated using Teil formula [2]:

1

{li(xk—fck)z}z
L=—"t1k - (4)

1
n N n o
n k=1 n k=l
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The closer the Teil coefficient is to zero, the closer are the corresponding values in
the predicted and actual TS. The calculated coefficient L proved to work for both
the statistical and qualitative retrospective predictions.

1. FORMULATION OF THE PROBLEM

It is well known from scientific literature the two-factor regression relation-

: .. Y : . K .
ship between the labour productivity — and the capital-labour ratio — [3]. This de-
L L

pendence is known as Cobb-Douglas equation. The model takes into account two
most important economic factors - capital assets and labour. However, the main
motivation to work is the possibility to gain income in the form of remuneration of
labour. Thus, the three-factor Cobb-Douglas model is considered in [1] and takes
into account person and society motivation through the remuneration of labour fac-
tor. The author of paper [1] uses the following derivatives of the abovementioned

. Y ... K . L
economic factors: — — the labour productivity; — — the capital-labour ratio with
L L

the elasticity coefficient 0 < oo <1 and for the three-factor model one more factor is

S . . . .
added — — the amount of remuneration with the elasticity coefficient 0 <f <1.
L

As a result new nonlinear regression dependence of productivity on the capital-
labor ratio and remuneration amount was derived in [1].

In practice, all annual values of the factor variables may be conveniently pre-
sented in the form of TS values. For example, paper [1] provides for annual statis-
tical data on Y, L, K, S taken from [4]. Using these data, the author of paper [1]

calculated the unknown scale factor 4", the capital-labor ratio elasticity coefficient
o, the remuneration of labour elasticity coefficient . The following values were

obtained: A" =0.9911, & =0.5196, B =0.5303.
Using the equation (2) and statistical TS data on capital-labour ratio, on re-
muneration of labour, and the calculated values of the coefficients 4™, o, B it is

possible to calculate the labour productivity prediction estimate. However, the reli-
ability of such prediction estimate is low owing to several reasons: first, the statis-
tical uncertainty of Y, L, K, S data is not taken into account; second, the known

Y . . . . .
values for — TS variance are not used; third, there is no in the equation (2) the
L

variable representing the labour productivity change rate which could have been a
basic element enabling prediction estimate calculation for the investigated object.

Therefore, for calculation of the most reliable labour productivity prediction
estimates the authors propose using a linear stationary model in terms of state
space (SS).
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2. ETHOD FOR CONSTRUCTING LINEAR STATIONARY
MODEL IN TERMS OF SS

Let us consider a linear stationary model in terms of SS as:

W0y =a-x(t) +b-u(t)+c-2(t) +d +w(t), x(t) =7, )

V(te) = X)), e €t ty], k=12,...,N, (6)
where {x(t)zfm:%, u(r)=k(r)=%), z(r>=s(r>=%, reliy]i:
) = ) =)y Y ma(), k=12, N} F is the ex-

L(¢ k+1)
pected mean of the initial state. To clarify the economic nature of the variables in
the model (5), (6) we are going to consider below all other variables after some
transformation of the three-factor model (2).

2.1. TRANSFORMATION OF THE THREE-FACTOR MODEL
INTO THE MODEL IN TERMS OF SS

Let use new notations for the variables in equation (2)

Y K S,
{—l:ﬁ’ _l:kl’ —l=Sl, l:1,2,,N}
L; L;

1 ]

Then the equation (2) can be rewritten as:
fi=A (k)" (s5;)P, i=1,2,...,N. (7)
Let us take a logarithm of both sides of (7). We obtain the following equation:
log(f;) =log(A4™)+alog(k;)+Blog(s;), i=1,2,...,N. (8)

Let us introduce additional notations: ff; =log(f;); a=1log(4"); kk; =log(k;);
ss; =log(s;), izl,_N.
Using the last notations the expression (8) is written as:

jﬁ:a"‘a'kki"'ﬁ'ssi’ i=1,2,...,N. )

The relation (9) is written in a purely deterministic form without considering the
random nature of TS statistical data {ff;, i=1,2,...,N}, {kk;,i=L2,...,N},
{ss;, i=L2,...,N}.

In order to take into account the random nature of the labour productivity TS
behaviour we will use the stationary model in terms of SS that takes into account
the object dynamics noise in additive form, assuming that they are white and
Gaussian, the initial conditions obey Gaussian law and that the observation noise is
also white and Gaussian.
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First, we introduce the notion of TS data change rate for the values of labour
productivity. Let us denote the average change rate of the output values of measur-
A _Ax
At At
in the range from ¢ to ¢t +Af, where Af=f(t;+Af)—f(¢;). Using
{At=t;,1—t;=1, i=1, N—1} and assuming that {x(k;)=f(k;), i=1LN} we
can write the model in terms of SS taking into account stochastic effects on TS data
in (5), (6):

x(t) =

ing system observing behaviour of the investigated object as pgp, ~

x(ti11)—x(8;)

liv1 — 4

=a-x()+a-u@)+B-z@)+d +w(t), x({)=x, (10)

and considering that Az =1 the equation (10) takes the form
x(tig)—x(t)=a-x(@)+o-u@)+B-z(@)+d +w(t), x(4)=x,

x(tiy)=(+a)-x(@t;)+b-u(t;)+c-z(t;) +d + W), x(t) =X,
or
x(tip)=ay-x(t)+b-u(t)+c-z(t;)+d +wt;),  x(4) =X, (11)

V(i) =x(ti) +v(tiy), t €t ty], i=12,...,N, (12)

where ¢; is the discrete point in time; x(¢;) is the discrete value of the investigated
object state characterizing the labour productivity; x(#) =X; is the initial object's
state corresponding to the labour productivity expected mean at the start time point
#; and assuming to follow Gaussian law with unknown variance P(t))=F; w(t;)
is the white Gaussian sequence with zero mean and unknown variance Q ;

fu(t;),i= I,_N} is the first input sequence of discrete values characterizing the capi-

tal-labour ratio with the elasticity coefficient 0<a <1; {z(t;), I,_N} is the second
input sequence of discrete values characterizing the remuneration of labour with
the elasticity coefficient 0<B<1; {¥(t;)=/(),i =1,_N} is the sequence of dis-
crete values of the measuring system output; {V(¢;), i =1,_N} is the white Gaussian
sequence with zero mean and unknown variance R; a,a,,d are the unknown
coefficients in the dynamics model (11); N is the sampling size.

Given that all statistical TS data {ff;, i=L2,...,N}, {kk;,i=1,2,...,N},
{ss;, i=L2,..., N} are random in nature we can include the aggregate random-
ness in the additive term of the object's dynamic noise {wW(#;), i=L2,...,N-1},

while all unaccounted factors of the model (11) we can include in the free additive
term d.

Thus, the function (2) is converted to the linear model in terms of SS, for
which it is proposed to use the following algorithm for recursive calculation of all
variances [5] necessary for solving equations according to the Kalman filter
scheme [6], and calculation of the coefficients gy, a, 3, d in the model (11) using

the least squares method (LSM).
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2.2. CALCULATION OF NOISE VARIANCE ESTIMATES
FOR DYNAMICS OF OBJECT AND MEASURING SYSTEM

In order to solve the problem of estimating the state and predicting the main
indicator of the dynamic system, the Kalman filter scheme is used for which the
model's parameters estimates as well as characteristics of the noise of the dynamics
and the measuring system should be known. Therefore, in this Section, for building
one-dimensional stochastic linear stationary model in terms of SS, we will consider
the recursive algorithm for estimating the variances of noise of the object dynamics
and the measuring system on the basis of discrete observations data of the given
sampling size.

We will represent the model of the investigated object in the continuous-
discrete form (5), (6). Note that the simplified differential equation, without con-
sidering the two input effects on the state of the investigated object in the ratio (5)
and given the loose requirements to the accuracy of the model on a given time in-
terval, corresponds to the following averaged differential equation:

x(t)=a-x(1), (13)
with the initial condition
x(n)=x, teln,lyl. (14)
The differential equation (13) can be approximated by the difference scheme
X)) =0 X (1) - (15)

In general, when the equation (13) on the interval is of a vector type and A —
is the matrix of (nxn) size, then (13) can be written in the form:

X(t)=A-X(1).

The condition for building a stable difference equation depends on stability of
the matrix A and can be found in [7].

Let the investigated object model on the given time interval [#;,7y] be repre-
sented by the model in terms of SS as:

X(tq1) = W Xt )+ Wty ) (16)
X(tl)z)_Cl, (17)
V(1) =X(tg) + Wk y), k=0,N-1, (18)

where for the stability reason we assumed that p=0.97; x(#;) — is the true value

of the investigated object state, w(#;)— is the white Gaussian sequence with zero
mean and unknown variance E[(w(tk)z]zca/(tN l[ty)=0; ¥(t) — are the
measuring system discrete output values; v(#;) — is the random sequence with the

unknown mean E[(W(#;)]=¢g and the unknown variance FE [(v(lk ))2]=
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—o? (ty |ty)=R; X(#;) — is the initial state with the expected mean X; and the
unknown variance H .

For estimation of the mean value we form the sequence of pseudo-
measurements in the following way:

v(it) P = y(t) - y(tyy), k=2,3,..N . (19)

The variables' superscripts mean the number of measurements used for the
particular variable formation. Let us suppose that g has constant value. It means

that the following equation can be written:
v(t)? = g+ (1), (20)

Then the estimate for g , assuming its constancy, is determined as follows

. . 1 . _
Gt 10 = Gt | )+ abs(v(t)? =t 14e))s k=2N, Q1)
N(k+1)

with the initial condition g(t; |#;)=0. Finally, g = q(ty |ty).
One can consider the expression for discrepancy (term by P. Eickhoff [8]) of a
simplified three-point filter in the form:

1 1
(1)@ = y(1) T W)~ yt), k=34, (22)

The mean value of the discrepancies: E[v(tk )(2)] =q, E[v(tk )(3)]= %q .

It was shown in [5, 9] that E[(v(tk)@) —%qj(v(tk)(z) — q)} =%va. Then the se-

quence for measurement of the variance G%V is determined in the following way:
()™ = 2[v(tk)(3> —%a}(tk | zk>j(v<rk)(2) ~3(t|1)), k=34, N, (23)

and the estimate for the constant variance Gw2 can be calculated by the formula

. . 1 . —
St | 1) = 6ty [ 1) + ;( Y™ =S5t 1 to)) s k=3,N, (24)

with the initial condition &2 (1, |7,)=0. Finally, O~ o2 (ty |1y).
It was shown in [5, 9] that E[(v(tk)(z) - q)z] =202 + va =2R+ Q. Thus, the

sequence:

2
) =2 (0@ =t )] 8 )|, k=238 @9)
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can be considered as the variance measurements sequence for which

o2 (ty |ty)=R, in this case the estimate, under the accepted assumption on its
constancy, is calculated by the recursive formula:

. n 2 . —
c%mww:o%%Awho+;w4wa”—c%%4whﬂy k=2,N, (26)

with the initial condition &2 (t;14)=0. Finally, R~ o’ nlty)-

There is left to obtain the estimates for the initial state noise P(f]) . As the es-
timate for the initial state noise variance we can take the estimate for the object's

. . . . 2

dynamics noise variance, i. e. P(t;)=P(t;|t))=6,,(t; 1) = 0.

The discrepancies coefficients of the second terms in relationships (21), (24),
(26) sometimes require some correction depending on the absolute values of dis-
crete observations.

The efficiency of the algorithm described above will be checked on the test
example using a Kalman filter algorithm for the simplified model of the form (16)—

(18). In this case the prediction estimates for one step X(#;,; |#;) can be calculated
according to the following Kalman filter formulae:

Mpqp 1) =1 Xty [ ), (27)
Xt [4)=y1), (28)
Mgy | ter1) = Xt gqy 1 85) + K (i) V(1) = X(tgiq 121)) (29)

while the filter amplification coefficient, the variances for prediction and filtered
estimates are calculated with the formulae:

Pt 1)

K(tgy1) = % ) (30)
Pt 115+ 67 (Mt [ 151)
P(tgyr | 6) =1 - Pty | 6) + 65t st (31
Pl 1) =631 1), (32)
Pty 1) = A=Kt ) Py 12) k=0, N -1. (33)

Thus, the algorithm for estimating the noise variances of the dynamics and
measuring system with subsequent application of the Kalman filtering involves the
following steps:

1) formation of the simplified filter discrepancies sequences v(tk)(z) and

v(tk)(3) according to the expressions (19) and (22);

2) estimation of the mean value of the increase of the measurements sequence
terms by ¢ according to (21);
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3) construction of the centered discrepancies values products according to the
formula (23);

4) estimation of the model's dynamics variance G%‘, according to the expres-
sion (24);

5) construction of the measuring system’s noise variance discrepancies se-
quences according to the formula (25);

6) estimation of the measuring system's noise variance o2 based on (26);

7) estimation of the initial state noise variance by the equation (32);

8) construction of the considered entities in the form of the filtered estimates
using the relations (27)—(33).

2.3. EXAMPLE 1. TESTING THE ALGORITHM ON TEST DATA

Let us consider the model (16)-(18). Let there be a sequence of random varia-
bles {W(#;), k=1,...,51} with the zero mean and the variance Q =0.1 and the

parameter 1 =0.9. Let there be also the sequence v(f;) with the constant mean
q =0.2 and the variance R=0.3. Assuming X(#]) =3 and using the generated ran-
dom sequences w(#; ), v(t;) together with the formulae (16), (18) we obtain the

sequence {y(f;), k=1,...,51}. To the obtained sequence {y(t;), k=1,...,51}
we apply estimation algorithms for: the measuring system's noise expected mean,
the object's state and the measuring system's noise variances, in addition we calcu-
late the coefficient [I using the least-squares method (LSM). The following esti-

mates were obtained after the calculations: ¢ #0.17, 0 =0.11, R~ 0.33, 1 ~0.89.

The results of modeling the measuring system output, the prediction and fil-
tered estimates, with and without considering the systematic error of the measuring
system output, are represented on fig. 1 and fig. 2, correspondingly. It can be seen
from the graphs that the proposed algorithm allows estimating the constant mathe-
matical mean for the measuring system's output sequence and to monitor the state
in the form of the filtered estimates.

3 —
------ cucTeMaTH4ecKas omunoka, g
55k = BBIXOJ] H3MEPHUTEIBHOU CHCTEMBI, J
’ R\ =*='OLICHKH IIpeJACKa3aHuu, Xp
5 h ===0oueHKH QUIbTpamii, X
1.5F
1 -
0.5
0 J
0 55

Fig. 1. The results of modeling the measuring system output, prediction and filtered
estimates taking into account a systematic error of the measuring system output
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3.5
------ cucTteMaTHyeckas omnoka, ¢
3F = BBIXO/{ H3MEPUTEIBHONW CUCTEMBI, }
=*='0OII€HKH NpeACKa3aHuu, XpP
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1 -
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Fig. 2. The results of modeling the measuring system output, prediction and filtered
estimates taking into account a systematic error of the measuring system output

Thus, in this section the recursive algorithm using the Kalman filter equations
for calculation of the object's dynamics and the measuring system's noise variances
is considered for the one-dimensional case. The algorithm allows calculating the
variances in a recursive form based on the measuring system output data without
any consideration of particular model parameters. The algorithm has been checked
on the test data. In the case of a multidimensional system equations for each di-
mension should be considered separately.

2.4. ALGORITHM FOR CONSTRUCTING A STATIONARY MODEL
IN TERMS OF SS

The algorithm for constructing the model in terms of SS consists of the fol-
lowing steps:

1. Let us choose one significant factor, then with respect to the factor's state
space variable we consider TS sequences of two input and one output data varia-

bles {ff(t;),u(t;)=kk;,z(t;)=sst;),i=1, N} and {y(t;)=f(t;),i=1, N}, corre-
spondingly.

2. Now, assuming that the investigated process state change depends on the
time variable 7, the investigated object's dynamics change rate x(¢;) can be ex-

pressed as the finite-difference relation (11) taking into account initial conditions,
two input factors and additive interference affecting the object's behaviour. Adding
to consideration the measuring system equation (12) the model in terms of SS can
be written in the form of (11) and (12).

The equations (11), (12) represent the investigated object's model in terms of

SS, the model still having unknown coefficients a;, o, 3, d and the unknown vari-
ances of the dynamics noise Q , the measuring system noise R and the initial state
noise P(#;)=F . We have only two inputs, one output data and the sampling size.

3. Using the algorithm described in 3.2 it is possible using only the measuring
system output sequences and the given sampling size to obtain estimates for the

investigated object dynamics error variance Q=0 , the measuring system error

variance R = R and the initial state error variance P(t;)= 131 .
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4. Assuming that {x(¢;) = y(¢;), i=1,N}, considering known data on the two
input sequences and one output sequence, and using the LSM [3] it is possible to
obtain estimates for the dynamics model coefficients (a,a,[3,d) of the equa-
tion (11).

5. The solution to the problem of estimating the investigated object state on
the basis of the Kalman filter equations [5, 6] for the model (11), (12) makes it pos-

sible to obtain the prediction estimates X(#;,; |#;) and the most reliable filtered es-
timates X(f;, |#;,1) concerning the state variable {x(¢;,1), t; €[f,ty], i =1,_N}.

Let us test the described algorithm using the data from ref. [1].

Example 2

Let the process at some interval [#],7y] be described by the non-linear Cobb-
Douglas [1] model of the type f =4 k% -sP where f 1is the output signal, k, s
are two input signals. It is required to compare accuracy characteristics of the pre-
diction estimates obtained by the non-linear regression model (2) and the linear
stochastic model in terms of SS (11), (12).

Solution. For the considered example the estimates for the model (2) coeffi-
cients were obtained with LSM for the TS data

@), k), s(t;) telt,ty], i =1,_N} . The initial observations data are brought
together in Table 1.

Table 1
Macroeconomic indicators Year
2000 2001 2002 2003 2004
Nominal GDP, bln., a.u. (Y;) 7305.6 | 8943.6 | 10817.4 | 13243.2 | 17048.1

Labour force engaged in economy (L; ) | 64.5 65.0 65.6 66.0 66.4

Fixed assets cost (K; ) 16.605 | 20241 24431 30329 32541

Average monthly salary, a.u. (S;) 22234 | 22404 4360.3 5498.5 6739.5

Table 1 (continued)

Macroeconomic indicators Year
2005 2006 2007 2008 2009
Nominal GDP, bln., a.u. (Y;) 216254 | 26880.5 331114 | 41668.0 39064
Labour force engaged in econo- 66.8 672 68.0 68.5 68.7
my (L;) . . . . .
Fixed assets cost (K;) 38368 43823 54246 64553 66489.6
Average monthly salary, a.u. (S;) | 8554.9 10633.9 13593.4 | 17290.1 | 20748.1

They were obtained in [1] using the LSM and the data from [4] the coeffi-
cients of the three-factor Cobb-Douglas formula (2): 4" =0.9911; a=0.5196;
B =0.5303. In this case, firstly, the coefficients values are consistent with TS data

concerning the GDP, the labour force engaged in economy and the fixed assets cost
but the TS data concerning the average monthly salary form the Table 1 are not
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consistent with the calculated values of the coefficients. Therefore, the data that
correspond to the calculated values of the coefficients were reconstructed by solv-
ing the inverse problem, putting it in more details, by recalculating the TS data on
the average monthly salary using the calculated coefficients and the TS data on the
GDP, the labour force engaged in economy and the fixed assets cost. The calculat-
ed TS data for the average monthly salary are represented in Table 1. Secondly, in
[1] the author notes that the data in the table are of stochastic nature and the coeffi-
cients estimates are also approximate owing to their stochastic nature.

The three-factor Cobb-Douglas formula reflects relatively roughly the de-
pendence of the labour productivity on the capital-labor ratio, the amount of labor
force engaged in economy and the labour cost. And using formula (2) for the GDP
(or the labour productivity) prediction leads to a rough estimate. That is why we
suggest using the linear stationary models in terms of SS for calculation of predic-
tion estimates. The model constructed in terms of SS and application of the Kalman
filter scheme allow calculating more accurate prediction estimates for the labor
productivity and corrected and more reliable filtered estimates for the labour
productivity. It should be noted that all variables included in the model (11), (12)
are interconnected and application of the Kalman equations for prediction estimates
allows correcting the estimates and obtaining filtered estimates as more reliable
estimates compared with the prediction estimates for labour productivity calculated
using the non-linear regression model.

But in order to use the Kalman filter equations we have to know the dynamic
model (11) parameters, the dynamic model variance estimate (Q), the measuring

system model variance estimate (R), and the initial state variance ( P(#;) ). Using
the recursive formulae (24), (26), (32) from the paragraph 3.2 one can calculate
estimates for the investigated object's dynamics error variance Q , for the measur-
ing system error variance R and for the initial state error variance P(#;)=F .

It should be noted that it is possible to use various model types in terms of SS.
For instance, the following types can be considered:

x(t+)=a;-x(@)+b-u@)+c-z(t)+w(t), x()=Xx, (34)
or the model of the type
x(t+D)=ay-x()+b-u@)+c-z(t)+d +w(t), x(1)=Xx. (35

The linear stationary model in terms of SS (34) reflects the dynamics behavior
depending on two input signals, although the ivestigated object's dynamics behav-
ior is also affected by other factors too. Therefore, in our opinion, the model in
terms of SS (35) more adequately describes the behaviour of the investigated ob-
ject. More adequate contribution of two input factors TS values on the GDP value
is reflected in the values of the weight coefficients ay,b,c,d .

For instance, the values of the unknown coefficients in the model (34) are:
a; =0.3251; b=0.6419; ¢=-0.0525. As one can see, there is no proportionality

between the contributions of input factors to the investigated object's state dynam-
ics change that is also reflected in the values of weight coefficients which are very
different b and c.
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The calculated using LSM values of the unknown coefficients in the mod-
el (35) are:a; =0.5021; »=0.3692; ¢=0.0186; d =0.408. In model (35) the first
input signal makes significant contribution, the weight coefficient is b, the second
input signal has lesser contribution, the weight coefficient is ¢, and contribution of
the other unaccounted factors is of the order of the free parameter d = 0.408.. The

calculated values of the variances for the model (11), (12) in terms of SS concern-
ing the logarithms of TS data for the labour productivity, the capital-labour ratio

and the labour remuneration are: Q =0.0078, R=0.042878, P(#;)=0.0078. The
logarithms of actual TS data for the labour productivity ( ff;), the capital-labour

ratio (kk;), the labour remuneration (ss;) are represented in Table 2, where the
values are for the RF Crimean region for years 2000-2014.

Table 2
C Year
Macroeconomic indicators 1 2 3 2 5
Labour productivity ( ff;) 47297 4.9243 5.1053 5.1379 5.2010
Capital-labour ratio ( kk; ) 5.4518 5.6752 5.7946 5.9642 6.1015
Average monthly salary, a.u. (ss;) | 3.5940 3.7421 | 3.8795 | 4.0285 | 4.6998

Table 2 (continued)
C Year
Macroeconomic indicators 5 7 3 9 10
Labour productivity ( £;) 5.3180 54001 | 5.5848 | 5.7095 | 5.7720
Capital-labour ratio ( kk; ) 6.1740 6.3056 | 6.4891 6.5977 | 6.7267
Average monthly salary, a.u. (ss;) | 4.9465 5.1316 | 5.4285 | 5.6220 | 5.6491

Table 2 (continued)
Macroeconomic indicators Year
11 12 13 14 15
Labour productivity ( ff;) 5.9211 6.0120 | 6.1504 | 62145 | 6.2959
Capital-labour ratio ( kk; ) 6.8334 6.9402 | 7.0749 | 7.1936 | 7.2354
Average monthly salary, a.u. (ss;) 5.7479 5.7613 5.8874 6.0272 6.0223

Now, basing on the TS data for the all three factors and the sampling size
N =15 let us generate the "real" data for three future years according to the fol-
lowing algorithm. For the all three TS we calculate pseudo-differences (i.e. gener-
ating pseudo-numbers similar to pseudo-random numbers as an algorithm generat-
ing the sequence of numbers which are almost independent of each other and obey
a given distribution law) using the formulae:

P_jr@) =G+~ ()
P _kk(i) = kk(i +1) — kk(i);

P _ss(i)=ss(i+1)—ss(i), i=1,2,3,..., N-1.
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Then for the obtained sequences of pseudo-differences we calculate the
means: mf =0.1119; mk =0.1274; ms =0.1734.

Then for i=1, 2, 3 using the heuristic formulae:
@) =ff(N—-4+i)+1.2mf +0.01-randn(1,1);

kk(i)=kk(N —4+i)+1.2mk +0.01- randn(1,1);
ss(i)=ss(N —4+i)+1.2ms+0.01-randn(1,1);

we generate three future values for each of the three factors ff, kk, ss.

Now everything is prepared for calculating the prediction estimates and fil-
tered estimates using the Kalman filter equations and the model (11), (12).

The calculated predictions estimates and analyses of their quality for the
three-factor non-linear regression model and the model in terms of SS are repre-
sented in Tables 3 and 4.

At first, we consider the accuracy of the labour productivity estimates based
on the non-linear Cobb-Douglas model, then the same consideration for the esti-
mates based on the linear stationary model in terms of SS. According to the model
(2) the following estimates were obtained for the three future years. The estimates
quality is measured by the absolute percentage error for the real and the calculated
values (see Table 3).

Table 3
redictions Prediction for 3 years
Element . . )
Indicators No. 15 ((Y(15)) i-th year (i+1)-th year (i+2)-th year
Real data 38723 33911 38101 42 352
Predicted data 38723 67 835 76711 89 064
Discrepancy 0 —33 924 —38610 —46 712
APE 0% ~ 101 % ~ 101.335 % ~ 110.295 %

Following the model (2) and using the real and predicted values the graphs of
the estimates for the three future years are given in Fig. 3.

Yp - npegckasam

Y -peansHBIe SHAYEHHMA
4 /

2 1 1 1 1 I I
1 1.5 2 2.5 3 3.5 E)

Fig. 3. Graphs based on the calculated values according to the three-factor Cobb-Douglas
model:

1) {Y(i), i =1,2,3} are the real observed data; 2) {Yp (i), i=1,2,3} are the predicted estimates for

the initial conditions Y (15) = Yp (15) =38723
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Let now consider the quality of the prediction estimates and filtered estimates
calculated, using the model in terms of SS for the 15 years long TS data, for three
future years. The estimates quality is measured by the absolute percentage error for

the real and the calculated values. All data are presented in Table 4.

Table 4
Predictions 5 e Prediction for 3 years
Indicators value for the i-th year (i+1)-th year | (i+2)-th year
15-th year

Real data y(z,) 38723 33911 38 101 42352
Predicted data x(z,,, | 7,) 38723 56 997 56 288 61271
Discrepancy based on the esti-
mate X(41 |4;) 0 ~23 086 ~18 187 -18919
APE 0 ~068.078% | =47.734% | =~44.671%
Filtered estimate x(z;,1 |#;41) 38723 46 071 47 987 52 650
Discrepancy based on the esti-
mate £(1,, |1;,1) 0 -12 160 —9886 -10298
APE 0% ~33.859% | =25.047% | =24315%

Following the model (8), (9) and using the model in terms of SS the graphs of
the estimates for the three future years are pictured on the fig. 4 for:

1) {Y(i), i=1,2,3} the real observed data, {Y, » (1), i=1,2,3} the predicted estimates
and {Y r (@), i=1,2,3} the filtered estimates.

Yp -npernckazaHHBIC
6 3HAYCHI

Yf -dunprpanmoHHbIC

Y - peanbHbIE
3HAYCHIL

Fig. 4. Graphs based on the calculated values according to the model in terms of SS:
1) {Y(i), i =1,2,3} are the real observed data; 2) {Y,(i),i=1,2,3} are the predicted estimates;
3) {Yr(), i=1,2,3} are the filtered estimates for the initial conditions xp(15) =xf(15) =Y (15) =38 723

We found that the TS predictions for the labour productivity obtained using
the model in terms of SS are more accurate than the predictions obtained using the
three-factor non-linear regression Cobb-Douglas model. The APEs for the three-
factor Cobb-Douglas model are in the range from 101% to 110%, whereas the
APEs for the model in terms of SS go down from 68% to 44%. The quality of the
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filtered estimates as the most reliable estimate is even better, the APEs go from
33 % to 24.3 %.

The qualities of the predicted estimates were also measured using the Teil
formula (4). The predicted estimates error coefficient calculated using the Cobb-

Douglas formula (2) and the real TS data is £; =0.3438.

The predicted estimates error coefficient calculated by the Teil formula (4) for
the estimates obtained using the Kalman filter equations and the real data is

L, =0.2091, and the predicted estimates error coefficient calculated by the Teil
formula (4) for the estimates obtained using the model in terms of SS, the Kalman
filter equations and the real TS data is L3 =0.1241.

As one can see analyzing the estimates quality using the absolute percentage
error and the Teil formula, the model in terms of SS provides more accurate predic-
tion estimates and more reliable filtered estimates.

CONCLUSION

Economic science is the main tool for objective economic decision making
and the quality of the decisions highly depends on the science level. There is no
direct applicability of economic models in economic practice, the reasons for that
were for the first time systematically described in [10]. At the same time despite
the "impracticalness" of such models they strongly influence the economic way of
thinking and the choice of an economic policy of an enterprise or a country.

The proposed linear stationary model in terms of SS allows calculating the in-
dustrial production yield dynamics behaviour in terms of cost as the one of the sig-
nificant key economic factors, the yield being dependent on the capital-labour ra-
tio, amount of the labour force engaged in the production and the labour costs. The
model has the minimal degree of uncertainty, similar to the three-factor industrial
Cobb-Douglas model, concerning unaccounted factors and high adequacy concern-
ing the statistical data used. The model takes into account the stochastic nature of
TS statistical data and the effect of each factor on the dynamics of the industrial
production yield in terms of cost.

Thus, the model in terms of SS can be more efficient than the three-factor
Cobb-Douglas model for predicting the goods and services production dynamics in
regional and branch levels.
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BasioBoii BHYyTpeHHUI NPOAYKT — OJIMH U3 BaXKHEWIIMX IOKa3aTejeil CUCTeMbl HalMo-
HaJIbHBIX CYETOB, KOTOPBIA XapaKTepH3yeT KOHEUHbIH pe3ysbTaT MPOU3BOAUTENBHOI AesTeNb-
HOCTH PKOHOMHYECKUX EIHHUIL-PE3UICHTOB U M3MEPSET CTOMMOCTh TOBApOB M yCIYT, IIPOU3-
BE/ICHHBIX 3THMH €JMHUIAMH BHYTPH CTPaHBI 32 OIIPE/ICIICHHBII IePUO BPEMEHHU ISl KOHEeU-
HOTO HCHOJBb30BaHMs. B craree paccmarpuBaeTcs alropuTM MOCTPOSHMS JIMHEHHOW CTaluo-
HapHOW Mozenu B (popMe IPOCTPAHCTBA COCTOSTHUI [UIST ONIMCAHUS TOBEACHHUS H IIPEACKa3aHuUs
COCTOSTHUSI ITPOU3BOJIUTEIBHOCTH TPY/Ia B 3aBUCUMOCTH OT (hakTOPOB ()OHITOBOOPYIKEHHOCTH U
BEJINYMHBI OIUIATHl TPyAa pabOTHUKOB B3aMEH OIMCAHMIO OOBEKTa, KOTOpas 3a7aHa B BHIE
Tpex(dakTopHOH HenHHeHHO# perpeccuonHoi Mozaenu Ko66a—/lyrnaca. B anroputme, kpome
00IIero MOCTPOSHHST TMHAMUIECKOI CTOXacTHYECKONH MOJIEIH, COAEPIKUTCS ONMICAHNe IpOLie-
Iyp B BHIE PEKypPEHTHBIX (OPMYJI, MO3BOJSIOINX PACCUUTATh BEIMUMHBI JUCIEPCUH IIyMOB
JUHAMUKH, IIyMOB M3MEPHUTEIBHON CHCTEMBI M HAYaJIbHOTO COCTOSHUS MOBEJICHUS UCCIETye-
MOro OOBEKTa Ha OCHOBE BPEMEHHBIX PsJIOB BBIXOJA CTATHCTHYECKHX JAHHBIX MPOU3BOAH-
TeNpHOCTH Tpyaa. Ha nmpumepe nmokasaHo, 4To MOCTPOCHHAs ANHAMHUYECKast MOZIENb JaeT Ooree
3¢ }eKTHBHBIE OIEHKH IMpPEICKa3aHMs BEJNYNH MPOU3BOAUTEILHOCTH TPyZAa MO CPaBHEHHUIO C
OLICHKaMH MPEACKa3aHusl, pACCUUTAHHBIMH Ha OCHOBE TpeXx(aKTOPHOW HEMHMHEHHO# perpeccu-
oHHOIT Mozenu. [IpuBeneH YHUCIICHHBII pacdeT KauecTBa TOYHOCTH OICHOK NPEeACKa3aHui, Mmo-
Jy4eHHBIX ¢ momolnsio TpexdakropHoii Gopmynsl Ko66a—/yrnaca u monenn B ¢popme mpo-
CTpaHCTBA COCTOSIHUI Ha OCHOBE aOCOJIOTHOU MPOIEHTHOH omuOku 1 ¢opmynsl Teiina. Pac-
YeTHbIC JaHHbIe yKa3bIBAalOT Ha 0oJiee TOYHBIC OIEHKH IpelcKa3aHusi U 0ojiee TOCTOBEpHbIC
OLIEHKU (PUIIBTPALINH B MOJIB3y MOAENHU B (hOPME MPOCTPAHCTBA COCTOSTHUM.

KnioueBnie cioBa: monens Ko66a—/lyrmaca, TpexdakropHas MoAeib, AUHAMHIECKAs
MOJIeJIb, IPOCTPAHCTBO COCTOSIHUH, Aucnepcun urymoB, ¢unsTp Kammana, aGcomoTHast mpo-
LIeHTHas omuoOKa, Gpopmyina Teitna

* Cmamos nonyuena 22 ¢gespansa 2018 .
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