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The algorithms based on the decomposition of a noisy image in an orthogonal basis of wavelet 
functions have been widely used to filter images (especially contrasting ones) over the past four dec-
ades. In this case, most wavelet filtering algorithms are of a threshold nature, namely: the decomposi-
tion coefficient smaller in an absolute value of a certain threshold value is reset to zero; otherwise the 
coefficient undergoes some (most often nonlinear) transformation. A certain (and very significant) 
drawback of threshold algorithms is that all coefficients of a certain decomposition level are processed 
with one identical threshold value (i.e., a constant value for all de-composition coefficients). This does 
not allow taking into account the “individual energy” of each decomposition coefficient for its more 
optimal processing. Therefore, we propose its own filtering factor for each coefficient, built on the basis 
of the optimal Wiener filtering and where a filtering parameter is introduced to compensate for incom-
plete a priori information on the value of the processed decomposition coefficients. In order to select a 
filtering parameter, a statistical approach has been proposed that makes it possible to estimate the opti-
mal value of this parameter with acceptable accuracy. The performed computational experiment has 
shown the developed algorithm effectiveness for wavelet filtering of images. 

Keywords: wavelet functions, two-dimensional wavelet functions, wavelet image filtering algo-
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1. INTRODUCTION AND RESEARCH OBJECTIVES  

In the last two decades, the algorithms, based on the representation of the fil-
tered image in the basis of wavelet functions are often used for image filtering [1, 2]. 
An overview of the wavelet functions used for this can be found in [3]. Algorithms 
include three main stages [4, 5]: 

1)  calculation of direct discrete wavelet transform (finding the decomposition 
coefficients for noisy image values); 

2)  processing of “noisy” decomposition coefficients; 
3)  calculation of the inverse discrete wavelet transform from the processed de-

composition coefficients (finding the “filtered” image values). 
The combination of these three stages is called wavelet filtering. Obviously, the 

quality of filtering a noisy image will depend both on the chosen decomposition basis 
and on the decomposition coefficient processing algorithm, used at the second stage. 
But it should be noted that the second factor plays a predominant role. 

In threshold algorithms (which have become widespread in practice), the de-
composition coefficient, which is less in absolute value than a certain threshold 
value, vanishes; otherwise, such a coefficient is preserved or undergoes some (in the 
general case, nonlinear) transformation. In foreign recourses, such processing is 
mentioned as thresholding. The threshold value is a kind of "control" parameter, 
which value significantly depends on the filtering error (for more details, see [6, 7]). 
An overview of the threshold functions used is given in [8]. In this case, the threshold 
value can be set by one value for the coefficients of all decomposition levels (inde-
pendent threshold level) or for each decomposition level by a separate one (depend-
ent threshold level). Looking ahead, we note that in practice, “hard” and “soft” 
threshold functions have become widespread which have very significant draw-
backs. The most important thing is that all coefficients of a certain decomposition 
level are processed with one identical threshold value [4, 5]. This does not allow 
taking into account the “individual energy” of each decomposition coefficient during 
its thresholding and does not provide the possibility of obtaining minimal filtering 
errors. In addition, the optimal value estimation of the threshold value (minimizing 
the filtering error) is a very difficult task, in practice (for a review of various algo-
rithms for choosing a threshold, see [4, 7]). 

An essential feature of multiplicative algorithms is the selection of an individ-
ual multiplier for each noisy decomposition coefficient (in foreign recourses, such 
processing is called shrinkaging). An example is the Wiener wavelet filtering algo-
rithm, where the multiplier (varying in the interval) for each coefficient is determined 
from the condition of the minimum mean square error in estimating each decompo-
sition coefficient, which guarantees a minimum root mean square error in filtering 
the entire image (for more details, see [4, 9]). Unfortunately, the calculation of such 
optimal multipliers requires setting the decomposition coefficients of the «exact» 
(not noisy) image, but such information are absent, filtering real images. In [4, 9], 
several quasi-optimal algorithms are proposed, which are an adaptation of the Wie-
ner filtering algorithm for filtering real images in practice, when the exact image is 
not known. 

A class of wavelet filtering algorithms was proposed in a number of works (for 
example, see [10–12]), which occupy an intermediate place between the threshold 
and Wiener algorithms (in the foreign literature they are called neighshrinking) due 
to the decomposition coefficients processing. These algorithms, more or less, take 
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into account the energy of nearby coefficients, processing a noisy decomposition 
coefficient. However, the proposed expressions for calculating the filtering factor 
contain values, which definitions are of an intuitive nature; it does not allow obtain-
ing the minimum error in image filtering [12, 13]. The parameter is introduced  
in [14], which choice allows approaching the minimum filtering error to a certain 
extent, in order to minimize the filtering error. 

 In our research paper, we solve the problem of constructing a wavelet filtering 
algorithm, where there is a filtering factor that changes in the interval [0,1] for each 
decomposition coefficient. Filtering parameter is introduced to compensate for in-
complete a priori information about the value of the processed decomposition coef-
ficients. In order to select this parameter, a statistical approach has been proposed, 
which makes it possible to estimate the optimal (in terms of the minimum mean 
square error) value of the filtering parameter with acceptable accuracy. The per-
formed computational experiment has shown the effectiveness of the developed lo-
cally adaptive algorithm for wavelet filtering of images. 

2. ADAPTIVE WAVELET FILTERING ALGORITHM 

Any image can be interpreted as a function of two variables ( , )f x y . Let us 
define the basic functions for the wavelet decomposition of such a function. Tradi-
tionally in the scientific recourses, a scalable function (paternal wavelet) is denoted 
as ( )x , but ( )x  – wavelet (mother wavelet). Using the operations of scaling and 
shifting, orthonormal basis functions are formed from these ones  , ( )j n x , 

 , ( )j n x  in the space of one variable functions ( )f x  [15, 16]. Tensor product of 

functions  , ( )j n x ,  , ( )j n x  generates the following basis functions for the de-
composition of two variables functions:  

 
   

    
, , , , , , , ,

, , , , , , , ,

( , ) ( ) ( ) ; ( , ) ( ) ( ) ;

( , ) ( ) ; ( , ) ( ) ( ) .

j n m j n j m j n m j n j m

j n m j n j m j m n j n j m

x y x y x y x y

x y x y x y x y

       

       
 (1) 

The corresponding decomposition coefficients are usually called as follows [4]: 
 approximating coefficients jA  are obtained as the decomposition coefficients 

in the basis  , , ( , )j n m x y ; 

 horizontal detailing factors jH  are obtained as the decomposition coeffi-

cients in the basis  , , ( , )j n m x y ; 

 vertical detailing factors jV  are obtained as the decomposition coefficients 

in the basis  , , ( , )j n m x y ; 

 diagonal detailing coefficients jD  are obtained as the decomposition coeffi-

cients in the basis  , , ( , )j n m x y . 
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In practice, the image is set by the matrix F  the size of X YN N  (decompo-
sition level 0j ). At the first level of decomposition (number 0 1j  ) approximating 
coefficients are calculated  01 1, ,j n mA aa  , detailing coefficients 

 01 1, ,j n mH ad  ,  01 1, ,j n mV da  ,  01 1, ,j n mD dd    01 1, ,j k nD dd  .  

At the second level of decomposition (number 0 2j  ) the matrix of coefficients is 
subjected to the similar processing  1 2 2 2 2, , ,A A H V D . Summarizing the data, 
we come to the following decomposition scheme:  

   1 1 1 1 2 2 2 2 1 1 1, , , , , , , , ,F A H V D A H V D H V D   

Let us note the regularity of changing two-dimensional arrays sizes of decom-
position coefficients, namely: at each decomposition level, the sizes of new coeffi-
cients arrays are halved compared to the previous arrays. In this case, the sum of the 
of coefficients arrays size is equal to the size of the original matrix F, which indicates 
the "volume" preservation of information contained in F. 

For example, let the original matrix  F  has sizes XN  512 (number of rows) ×  
× YN  384 (number of columns). Then the arrays of coefficients 1A , 1H , 1V , 1D  
have sizes 256 192 , arrays of coefficients 2A , 2H , 2V , 2D  – have sizes 128 96  
so on. 

The inverse two-dimensional wavelet transform is carried out according to the 
scheme: 

   2 2 2 2 1 1 1 1 1 1 1, , , , , , , , , .A H V D H V D A H V D F    

According to the level j  by 1j   all matrices sizes of the coefficients are dou-
bled. 

We suppose the registered image values ( , )f x y  are represented by matrix F  
by the size X YN N , which elements can be represented: 

 , , ,X Y X Y X Yi i i i i iF F   , (2) 

where ,X Yi iF  – “exact” image values, ,X Yi i  – random measurement noise with 

zero mean and variance 2
  and values ,X Yi i  not correlated with each other. It was 

shown (see, for example, [4,9]) that in the wavelet decomposition of the matrix F  
errors in calculating detailing coefficients jH , jV , jD  by 2 order and more than 

the approximating coefficients jA . Therefore, only these detailing coefficients are 
processed at the second stage of wavelet filtering. For the convenience of further 
recording, any of the detailing coefficients will be denoted as ,n md , where the indi-
ces ,  n m  determine the row and column numbers of the corresponding matrix of 
decomposition coefficients (the number of the decomposition level is going down). 



A locally adaptive wavelet filtering algorithm for images 29 

We should suppose that matrix, used for the wavelet decomposition, F basis 
functions (1) are orthonormal (see [4, 15, 16] for more details). Then it is proved  
[4, 9] that the expansion coefficients are random variables and: 

 one can take the representation , , ,n m n m n md d   , where ,n md  – exact im-

age decomposition coefficients, ,n m  – random coefficient calculation error, condi-
tioned by noise-induced image measurement; 

 have a mathematical expectation , ,n m n mM d d⎡ ⎤ ⎣ ⎦
  and variance 

2
, ,n m n mD d D ⎡ ⎤ ⎡ ⎤   ⎣ ⎦⎣ ⎦

 ; 

 errors ,n m  coefficient calculations are not correlated with each other. 
There is a question: how the random decomposition coefficients should be pro-

cessed ,n md  or how to build an estimate ,
ˆ
n md  for the exact coefficient ,n md , in 

order to “filter out” the error as much as possible ,n m  and distort the coefficient 

itself as little as possible ,n md , or get the minimum systematic error? In order to 
answer this question let us consider the mean square error (MSE) of the estimation, 
which we define by the expression as a criterion characterizing the total estimation 
error: 

 2
, , , ,

ˆˆ( ) ( )n m j n m j
j n m

F M d d
⎡ ⎤

  ⎢ ⎥
⎢ ⎥⎣ ⎦
∑∑∑ , (3) 

where j  – decomposition level. It was proved [4, 9], that the minimum MSE is 
achieved if the estimate ,

ˆ
n md  is defined by the expression: 

 
, ,opt opt ,

ˆ
n m n m n md w d  , (4) 

where the optimal filtering factor ,optn mw  has a form: 

 ,opt 2

2
,

1

1
n m

n m

w

d



⎛ ⎞
⎜ ⎟
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⎝ ⎠

. (5) 

In this case, MSE of the coefficient ,n md  is defined as: 

    , ,

22 2
opt opt , ,2 2

,

ˆ ˆ
n m n m n m n m

n m
d M d d d

d




⎡ ⎤
   ⎢ ⎥

 ⎣ ⎦
. (6) 

Unfortunately, the constructed optimal multiplier (5) includes the ratio “noise / 

signal” ,

2

opt 2
,

n m
n m

S
d

 , which is unknown due to ignorance of the values of “exact” 

decomposition coefficient ,n md , is in the denominator. Expressions (4), (5) are of 
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theoretical interest, since they indicate what to strive for, constructing estimates that 
are implemented in practice. One of such estimates, based on iterative refinement of 
the “noise / signal”, was constructed in [4, 9]. 

We propose another approach to constructing a quasi-optimal filtering factor, 
which can be implemented in practice and where 2

,n md  is estimated by the nearby 

noisy expansion coefficients. We define a rectangular aperture ,n mA  centered at 

point (n, m) of size   2 1 2 1X YL L  , which contains the matrix elements of the 

processed coefficients with indices  ;  X X X Y Y Yn L i n L m L i m L        . 

Further, for each coefficient 2
,n md  we define the value: 

    , ,

2 2
, ,

1
2 1 2 1 i i AX Y n m

n m i j
X Y

d
L L 

 
  ∑  , (7) 

which can be interpreted as a sample estimate for the quantity 2
,n md . Then the quasi-

optimal estimate for the filtering factor (5) can be written in the form: 

 , 2

2
,

1ˆ

1
n m

n m

w



⎛ ⎞
⎜ ⎟ 
⎜ ⎟⎝ ⎠

, (8) 

and the quasi-optimal estimate itself ,
ˆ
n md  for ,n md  we calculate as: 

 , , , ,2

2
,

1ˆ ˆ

1
n m n m n m n m

n m

d w d d


 
⎛ ⎞
⎜ ⎟ 
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  . (9) 

These two expressions contain (in contrast to (5)) the filtering parameter, intro-
duced to “compensate” the errors in the estimation of the value 2

,n md . How should 

we choose this option? Obviously, it is desirable to take the quantity opt  as such a 
parameter, minimizing MSE of wavelet filtering (3). Unfortunately, due to ignorance 
of the expansion coefficients ,n md  the exact image cannot be calculated with the 

exact value opt . Therefore, we modify the selection algorithm, used to estimate the 
optimal threshold values in the threshold wavelet filtering algorithms (for more de-
tails, see [4, 9]). We introduce the following statistical criterion: 

  , , ,2
1 1

1 ˆ( ) ( )
Y X

X Y X Y X Y
Y X

N N
W i i i i i i

i i
F F F

 
    


∑ ∑   ,  (10) 

where ,ˆ ( )X Yi iF   is an matrix element of the image, obtained by the inverse wavelet 
transform of the expansion coefficients (9) for a given filtering parameter  . As an 
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estimate for the optimal filtering parameter opt  the value w  is taken, at which the 
random variable ( )W   is in the interval 

 
, 1 ,

2 2

,  ,
N N 

⎡ ⎤
⎢ ⎥ 
⎢ ⎥⎣ ⎦

 (11) 

where 
, 1 ,

2 2

,  
N N 

   – quintiles 2
N  – distributions with the number of freedom 

degrees X YN N N  levels 
2
 , 1

2
 , respectively;   – the probability of the first 

kind error, testing the statistical hypothesis about the optimality of the parameter w  
(usually 0.05  ). In the process of filtering images, the value 30N   and therefore 
in order to calculate the quantiles 2

N  – distribution at 0.05   use expressions: 

 0.025, 1.96 2N N N   ,     0.975, 1.96 2N N N   . (12) 

We should note that the calculation is reduced to solving the nonlinear equation 

 ( ) .W N     (13) 

However, the iterative process stops as soon as ( )( )n
W   is in the interval (11).  

The number of iterations is much less than, searching for the root of a nonlinear 
equation with a given accuracy 8 6[10 ,  10 ]  . This makes it possible to effec-
tively use “slow” iterative algorithms (for example, the dichotomy method – dividing 
a segment in half). 

Introducing local evaluation 2
,n m  and choosing a filtering parameter   from 

the condition of the minimum filtering MSE (i.e., its adaptation to a specific pro-
cessed image), allows us to call the proposed wavelet filtering algorithm with a fil-
tering factor (8) a locally adaptive algorithm. 

An essential feature of the computation algorithm is the use of noise variance 
to compute 2

 . In practice, this value is unknown, and in this case, it is possible to 
use the estimate 

2
,2 (| |)

ˆ ,
0.6745

n mmedian d


⎡ ⎤
  ⎢ ⎥

⎢ ⎥⎣ ⎦


 

where operator ,(| |)n mmedian d  calculates the median of the absolute values of di-
agonal detailing coefficients of the decomposition level 0 1j  . 
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3. COMPUTATIONAL EXPERIMENT RESULTS 

Due to the nonlinear nature of the estimation procedure   it is impossible to do 
analytical studies of the filtering factor (8) and therefore a numerous computational 
experiment were carried out to filter different (by spectral composition) images.  
Let us highlight the experiment results with the LENA image (see Fig. 1), which is 
often used in foreign publications as a test image. In Fig. 1, a) an exact image is 
shown, in Fig. 1, b) – noisy image with relative noise level 0.10  , where 
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Fig. 1. Accurate and noisy images 

One can see a significant distortion of the exact image by normally distributed 
measurement noise. On fig. 2 shows the dependence on the smoothing parameter :  

 relative smoothing error (solid curve) 
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 statistics ( )W   – a dotted curve is shown in the figure;  
 quintiles 0.025, 0.975,,  N N   – are shown by dashed lines.  
For the convenience of display in the figure, the last three quantities are divided 

by the value 65536X YN N N  . As it follows from (11), as the filtering parameter 
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values are accepted for which the statistics values are between dashed lines (quin-
tiles (12)), which, have become one dashed line due to the scale of the figure. There-
fore, as an estimate W  the value is taken  , for which the function ( )W   is 
between these dashed lines. 

 

     
Fig. 2. Characteristics algorithm  

of filtration  
Fig. 3. Filtered image of LENA 

An analysis of these graphs allows us to conclude that the proposed approach 
to choosing a filtering parameter allows us to calculate values W  from the region 
of the minimum of the relative filtering error. In this experiment, at 0.10  , the 
relative filtering error ( )F W   is 0.046. The filtered image is shown in fig. 3.  
For a relative noise level of 0.15 – ( )F W   equals 0.061, which indicates good 
stability of the proposed filtering algorithm to measurement noise. 

CONCLUSION  

The proposed locally adaptive filtering algorithm is essentially an adaptation of 
the optimal Wiener algorithm to the real information available in this experiment. 
The introduced filtering parameter and its choice from the condition of the minimum 
MSE makes it possible to compensate for the lack of a priori information on the 
expansion coefficients of the exact image. The comparison with the filtering results, 
the same noisy images by threshold algorithms (for more details see [4, 7]) shows 
that the proposed algorithm has 15…20 % less filtering MSE, although it requires 
more operations due to the need to calculate the values (7). 
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Локально-адаптивный алгоритм вейвлет-фильтрации изображений* 

Ю.Е. ВОСКОБОЙНИКОВ 

Аннотация 
На протяжении четырех последних десятилетий для фильтрации изображений (осо-

бенно контрастных) широко используются алгоритмы, основанные на разложении зашум-
ленного изображения в ортогональном базисе вейвлет-функций. При этом большинство 
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алгоритмов вейвлет-фильтрации носят пороговый характер, а именно: коэффициент раз-
ложения, меньший по абсолютной величине, некоторой пороговой величины зануляется,  
в противном случае коэффициент подвергается некоторому (чаще всего нелинейному) 
преобразованию. Определенным (и весьма существенным) недостатком пороговых алго-
ритмов является то, что все коэффициенты определенного уровня разложения обрабаты-
ваются с одной одинаковой пороговой величиной (т. е. постоянной величиной для всех 
коэффициентов разложения). Это не позволяет учитывать «индивидуальную энергию» 
каждого коэффициента разложения для более оптимальной его обработки. Поэтому в 
настоящей работе предлагается для каждого коэффициента свой фильтрующий множи-
тель, построенный на основе оптимальной винеровской фильтрации и в котором для ком-
пенсации неполной исходной информации о величине обрабатываемого коэффициентов 
разложения вводится параметр фильтрации. Для выбора параметра фильтрации предло-
жен статистический подход, позволяющий с приемлемой точностью оценить оптимальное 
значение этого параметра. Выполненный вычислительный эксперимент показал эффек-
тивность разработанного алгоритма вейвлет-фильтрации изображений. 

Ключевые слова: вейвлет-функции, двумерные вейвлет-функции, алгоритмы 
вейвлет-фильтрации изображений, ошибки вейвлет-фильтрации, фильтрующие множи-
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