Atapin Vladimir G. 2017 no. 3(76)

OBRABOTKAMETALLOV № 3 (76) 2017 41 EQUIPMENT. INSTRUMENTS 7. Atapin V.G. Soprotivlenie materialov [Strength of materials]. Moscow, Yurait Publ., 2016. 342 p. ISBN 978- 5-534-01762-5. 8. Vol’mir A.S., Grigor’ev A.I., Stankevich A.I. Soprotivlenie materialov [Strength of materials]. Moscow, Drofa Publ., 2007. 592 p. ISBN 978-5-358-01283-7. 9. Pol B. van der, Strutt M.J. On the stability of the solutions of Mathieu’s equation. Philosophical Magazine , 1928, vol. 5, pp. 18–38. 10. Nesterov A.V., Nesterov S.V. Issledovanie reshenii uravneniya Mat’e v pervoi oblasti ustoichivosti pri mod- elirovanii nestatsionarnykh ob”ektov upravleniya [The research of Mathieu equation solution of the first stability re- gion at modeling of non-stationary objects of control]. Matematicheskoe i programmnoe obespechenie sistem v pro- myshlennoi i sotsial’noi sferakh – Software of systems in the industrial and social fields , 2011, no. 1-1, pp. 102–107. 11. Gribkov V.A., Khokhlov A.O. Priem, uproshchayushchii reshenie zadachi ustoichivosti parametricheski sta- biliziruemykh staticheski neustoichivykh mayatnikovykh sistem [A method to simplify solution of stability prob- lem for parametrically stabilized statically unstable pendulum systems]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie – Proceedings of Higher Educational Institutions. Маchine Building , 2015, no. 11 (668), pp. 29–38. doi: 10.18698/0536-1044-2015-11-29-38. 12. Arkhipova I.M., Luongo A., Seyranian A.P . Vibrational stabilization of the upright statically unstable posi- tion of a double pendulum. Journal of Sound and Vibration, 2012, vol. 331, iss. 2, pp. 457–469. doi: 10.1016/j. jsv.2011.09.007. 13. Parovik R.I. Fractal parametric oscillator as a model of a nonlinear oscillation system in natural mediums. International Journal of Communications, Network and System Sciences , 2013, vol. 6, no. 3, pp. 134–138. doi: 10.4236/ijcns.2013.63016. 14. Rand R.H., Sah S.M., Suchrsky M.K. Fractional Mathieu’s equation. Communications in Nonlinear Science and Numerical Simulation , 2010, vol. 15, pp. 3254–3262. 15. Parovik R.I. Digrammy Stretta-Ainsa dlya obobshchennogo uravneniya Mat’e [Charts Strutt-Ince for generalized Mathieu equation]. Vestnik KRAUNTs. Fiziko-matematicheskie nauki – Bulletin KRASEC. Physical & Mathematical Sciences , 2012, vol. 4, no. 1, pp. 24–30. doi: 10.18454/2079-6641-2012-4-1-24-30. © 2017 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1