Panov D.O. et al. 2017 no. 4(77)

OBRABOTKAMETALLOV № 4 (77) 2017 17 MATERIAL SCIENCE References 1. Sadovskii V.D. Strukturnaya nasledstvennost’ v stali [Structural heredity in steel]. Moscow, Metallurgiya Publ., 1973. 205 p. 2. Lipchin N.N., Kokovyakina S.A. Strukturnyi mekhanizm prevrashchenii pri nagreve stali [Structural mecha- nism of transformations during steel heating]. Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment , 1970, no. 9, pp. 2–7. (In Russian). 3. Schastlivtsev V.M., Koptseva N.V. Elektronno-mikroskopicheskie issledovaniya austenita pri nagreve kon- struktsionnoi stali [Electron-microscopic studies of austenite during heating of structural steel]. Fizika metallov i metallovedenie = The Physics of Metals and Metallography , 1976, vol. 42, no. 4, pp. 837–847. (In Russian). 4. Zel’dovich V.I. Three mechanisms of formation of austenite and inheritance of structure in iron alloys. Metal Science and Heat Treatment , 2008, vol. 50, iss. 9–10, pp. 442–448. doi: 10.1007/s11041-009-9082-3. 5. Sadovskii V.D., Schastlivtsev V.M., Tabatchikova T.I., Yakovleva I.L. Lazernyi nagrev i struktura stali: atlas mikrostruktur [Laser heating and the structure of steel: an atlas of microstructures]. Sverdlovsk, Ural’skii rabochii Publ., 1989. 102 p. 6. Bernshtein L.M., Kaputkina L.M., Prokoshkin S.D. Otpusk stali [Tempered steel]. Moscow, MISIS Publ., 1997. 336 p. 7. Golovanenko S.A., Fonshtein N.M. Dvukhfaznye nizkolegirovannye stali [Biphasic low-alloyed steels]. Mos- cow, Metallurgiya Publ., 1986. 207 p. 8. Gridnev V.N., Meshkov Yu.Ya., Oshkarev S.P., Trufilov V.I. Fizicheskie osnovy elektrotermicheskogo uproch- neniya stali [Physical basis of electrothermal hardening of steel]. Kiev, Naukova dumka Publ., 1973. 335 p. 9. Gridnev V.N., Ivasishin O.M., Meshkov Yu.Ya., Oshkaderov S.P. Kriticheskie tochki pri bystrom nagreve deformirovannoi stali [Critical points in the rapid heating of deformed steel]. Metallofizika = Metallophysics , 1975, iss. 61, pp. 98–100. 10. D’yachenko S.S. Obrazovanie austenita v zhelezouglerodistykh splavakh [The formation of austenite in iron- carbon alloys]. Moscow, Metallurgiya Publ., 1982. 128 p. 11. Gornostyrev Yu.N. [Microscopic mechanisms of the heterogeneous nucleation of a new phase under a poly- morphic FCC-BCC transformation]. Fazovye i strukturnye prevrashcheniya v stalyakh : sbornik nauchnykh trudov [Proceedings of Nosov Magnitogorsk State Technical University “Phase and structural transformations in steel”]. Magnitogorsk, Magnitogorskii dom pechati Publ., 2008, pp. 31–57. (In Russian). 12. Makovetskii A.N., Tabatchikova T.I., Yakovleva I.L., Tereshchenko N.A., Mirzaev D.A. Structure formation in low-alloy pipe steel during heating in the intercritical temperature range. The Physics of Metals and Metallogra- phy , 2012, vol. 113, iss. 7, pp. 704–715. doi: 10.1134/S0031918X12070083. 13. Yugai S.S., Kleiner L.M., Shatsov A.A., Mitrokhovich N.N. Formation of the structure and properties of a low-carbon martensitic steel 12KH2G2NMFT upon quenching . The Physics of Metals and Metallography , 2004, vol. 97, no. 1, pp. 98–103. 14. Huang J., Poole W.J., Militzer M. Austenite formation during intercritical annealing. Мetallurgical and Ma- terials Transactions A , 2004, vol. 35, iss. 11, pp. 3363–3375. doi: 10.1007/s11661-004-0173-x. 15. Bojack A., Zhao L., Morris P.F., Sietsma J. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel. Materials Characterization , 2012, vol. 71, pp. 77–86. doi: 10.1016/j. matchar.2012.06.004. 16. Chang M., Yu H. Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon microalloyed steel. International Journal of Minerals, Metallurgy and Materials , 2013, vol. 20, iss. 5, pp. 427–432. doi: 10.1007/s12613-013-0746-z. 17. Wei R., Enomoto M., Hadian R., Zurob H.S., Purdy G.R. Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1C–3Mn–1.5Si alloy. Acta Materialia , 2013, vol. 61, iss. 2, pp. 697–707. doi: 10.1016/j.actamat.2012.10.019. For citation: Panov D.O., Barsukova T.Y., Smirnov A.I., Orlova E.N., Simonov Yu.N. Intercerical quenching of low-carbon steel with the formation of a disperse multiphase structure. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2017, no. 4 (77), pp. 6–18. doi: 10.17212/1994-6309-2017-4-6-18. (In Russian). (by more than 70 %). According to the data of fractographic analysis, samples after dynamic tests have viscous fracture mode. The received mode of heat treatment allows to increase the level of toughness of the steel under study without loss in strength of products of any overall dimensions for oil-producing machine building.

RkJQdWJsaXNoZXIy MTk0ODM1