Dyčková L. et. al. 2018 Vol. 20 No. 3

OBRABOTKAMETALLOV Vol. 20 No. 3 2018 119 MATERIAL SCIENCE 7. Spheroidization of molybdenum powder by radio frequency thermal plasma / X.-P. Liu, K.-S. Wang, P. Hu, Q. Chen, A. Volinsky // International Journal of Minerals, Metallurgy and Materials. – 2015. – Vol. 22, iss. 11. – P. 1212–1218. – doi: 10.1007/s12613-015-1187-7. 8. Garg P., Park S.-J., German R.M. Effect of die compaction pressure on densification behavior of molybdenum powders // International Journal of Refractory Metals and Hard Materials. – 2007. – Vol. 25, iss. 1. – P. 16–24. – doi: 10.1016/j.jrmhm.2005.10.014. 9. On grain boundary segregation in molybdenum materials / K. Leitner, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, S. Primig // Materials & Design. – 2017. – Vol. 135. – P. 204–212. – doi: 10.1016/j.matdes.2017.09.019. 10. Mechanical properties of molybdenum products prepared by using molybdenum powders with different micro-morphologies / G. An, J. Sun, R.-Z. Liu, J. Li, Y.- J. Sun // Rare Metals. – 2015. – Vol. 34, iss. 4. – P. 276– 281. – doi: 10.1007/s12598-013-0194-y. 11. Preparation of molybdenum powder from molybdenite concentrate throughvacuumdecomposition- acid leaching combination process / Ch. Yang, Y. Zhou, D. Liu,W. Jiang, F. Liu, Z. Liu // RareMetal Technology. – Cham: Springer, 2017. – P. 235–246. 12. Bolitschek J., Luidold S., O’Sullivan M. A study of the impact of reduction conditions on molybdenum morphology // International Journal of Refractory Metals and Hard Materials. – 2018. – Vol. 71. – P. 325–329. – doi: 10.1016/j.ijrmhm.2017.11.037. 13. Rheological and sintering behaviors of nanostructured molybdenum powder / Y. Kim, S. Lee, J.- W. Noh, S.H. Lee, I.-D. Jeong, S.-J. Park // International Journal of Refractory Metals and Hard Materials. – 2013. – Vol. 41. – P. 442–448. – doi: 10.1016/j. ijrmhm.2013.06.001. 14. Densification and crack suppression in selective laser melting of pure molybdenum / D. Wang, Ch. Yu, J. Ma, W. Liu, Z. Shen // Materials and Design. – 2017. – Vol. 129. –P. 44–52. –doi: 10.1016/j.matdes.2017.04.094. 15. Ghayour H., Abdellhi M., Bahmanpour M. Optimization of the high energy ball-milling: modeling and parametric study // Powder Technology. – 2016. – Vol. 291. – P. 7–13. – doi: 10.1016/j.powtec.2015.12.004. 16. Microstructure and thermal stability of MoSi2- CoNiCrAlY nanocomposite feedstock prepared by high energy ball milling / M. Liu, X. Zhong, J. Wang, Z. Liu, W. Qui, D. Zeng // Surface and Coatings Technology. – 2014. – Vol. 239. – P. 78–83. – doi: 10.1016/j. surfcoat.2013.11.022. 17. Harris J.R., Wattis J.A.D., Wood J.V. A com- parison of different models for mechanical alloying // Acta Materialia. – 2001. – Vol. 49, iss. 19. – P. 3991– 4003. – doi: 10.1016/S1359-6454(01)00302-0. 18. Analysis of mechanical milling in simoloyer: an energy modeling approach / B. Karthik, G.S. Gautam, N.R. Karthikeyan, B.S. Murty // Metallurgical and Materials Transactions A. – 2012. – Vol. 43, iss. 4. – P. 1323–1327. – doi: 10.1007/s11661-011-0946-y. 19. Effect of high energy ball milling on structure and properties of 95W-3.5Ni-1.5Fe heavy alloys / M. Debata, T.S. Acharya, P. Sengupta, P.P. Acharya, S. Bajpai, K. Jayasankar // International Journal of Refractory Metals and Hard Materials. – 2017. – Vol. 69. – P. 170– 179. – doi: 10.1016/j.ijrmhm.2017.08.007. 20. Suryaanarayana C. Mechanical alloying and milling // Progress in Materials Science. – 2001. – Vol. 46, iss. 1–2. – P. 1–184. – doi: 10.1016/S0079- 6425(99)00010-9. 21. Ebrahimi-Kahrizsangi R., Abdellahi M., Bah- manpour M. Ignition time of nanopowders during milling: a novel simulation // Powder Technology. – 2015. – Vol. 272. – P. 224–234. – doi: 10.1016/j. powtec.2014.12.009. 22. High energy milling on tungsten powders / U.R. Kiran, M.P. Kumar, M. Sankaranarayana, A.K. Singh, T.K. Nandy // International Journal of RefractoryMetals and HardMaterials. – 2015 –Vol. 48. – P. 74–81. – doi: 10.1016/j.ijrmhm.2014.06.025. 23. Abdellahi M., Bhmanpour M., Bahmanpour M. Optimization of process parameters tomaximize hardness of metal/ceramic nanocomposites produced by high energy ball milling // Ceramics International. – 2014. – Vol. 40, iss. 10. – P. 16259–16272. – doi: 10.1016/j. ceramint.2014.07.063. 24. Biyik S., Aydin M. The effect of milling speed on particle size and morphology of Cu25W composite powder // Acta Physica Polonica A. – 2014. – Vol. 127. – P. 1255–1260. 25. Rzavi-Tousi S.S., Szpunar J.A. Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling // Powder Technology. – 2015. – Vol. 284. – P. 149–158. – doi: 10.1016/j. powtec.2015.06.035. 26. Investigation of milling characteristics of alumina powders milled with a newly designed vibratory horizontal attritor / Y. Kilinc, S. Öztürk, B. Öztürk, I. Uslan // Powder Technology. – 2004. – Vol. 146. – P. 200–205. – doi: 10.1016/j.powtec.2004.09.031. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов.  2018 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0/ )

RkJQdWJsaXNoZXIy MTk0ODM1