Dyčková L. et. al. 2018 Vol. 20 No. 3
OBRABOTKAMETALLOV Vol. 20 No. 3 2018 122 MATERIAL SCIENCE 21. Ebrahimi-Kahrizsangi R., Abdellahi M., Bahmanpour M. Ignition time of nanopowders during milling: a novel simulation. Powder Technology , 2015, vol. 272, pp. 224–234. doi: 10.1016/j.powtec.2014.12.009. 22. Kiran U.R., Kumar M.P., Sankaranarayana M., Singh A.K., Nandy T.K. High energy milling on tungsten powders. International Journal of Refractory Metals and Hard Materials , 2015, vol. 48, pp. 74–81. doi: 10.1016/j. ijrmhm.2014.06.025. 23. Abdellahi M., Bhmanpour M., Bahmanpour M. Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling. Ceramics International , 2014, vol. 40, iss. 10, pp. 16259–16272. doi: 10.1016/j.ceramint.2014.07.063. 24. Biyik S., Aydin M. The effect of milling speed on particle size and morphology of Cu25W composite powder. Acta Physica Polonica A , 2014, vol. 127, pp. 1255–1260. 25. Rzavi-Tousi S.S., Szpunar J.A. Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology , 2015, vol. 284, pp. 149–158. doi: 10.1016/j.powtec.2015.06.035. 26. Kilinc Y., Öztürk S., Öztürk B., Uslan I. Investigation of milling characteristics of alumina powders milled with a newly designed vibratory horizontal attritor. Powder Technology , 2004, vol. 146, pp. 200–205. doi: 10.1016/j. powtec.2004.09.031. Conflicts of Interest The authors declare no conflict of interest. 2018 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1