Dyčková L. et. al. 2018 Vol. 20 No. 3

OBRABOTKAMETALLOV Vol. 20 No. 3 2018 122 MATERIAL SCIENCE 21. Ebrahimi-Kahrizsangi R., Abdellahi M., Bahmanpour M. Ignition time of nanopowders during milling: a novel simulation. Powder Technology , 2015, vol. 272, pp. 224–234. doi: 10.1016/j.powtec.2014.12.009. 22. Kiran U.R., Kumar M.P., Sankaranarayana M., Singh A.K., Nandy T.K. High energy milling on tungsten powders. International Journal of Refractory Metals and Hard Materials , 2015, vol. 48, pp. 74–81. doi: 10.1016/j. ijrmhm.2014.06.025. 23. Abdellahi M., Bhmanpour M., Bahmanpour M. Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling. Ceramics International , 2014, vol. 40, iss. 10, pp. 16259–16272. doi: 10.1016/j.ceramint.2014.07.063. 24. Biyik S., Aydin M. The effect of milling speed on particle size and morphology of Cu25W composite powder. Acta Physica Polonica A , 2014, vol. 127, pp. 1255–1260. 25. Rzavi-Tousi S.S., Szpunar J.A. Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology , 2015, vol. 284, pp. 149–158. doi: 10.1016/j.powtec.2015.06.035. 26. Kilinc Y., Öztürk S., Öztürk B., Uslan I. Investigation of milling characteristics of alumina powders milled with a newly designed vibratory horizontal attritor. Powder Technology , 2004, vol. 146, pp. 200–205. doi: 10.1016/j. powtec.2004.09.031. Conflicts of Interest The authors declare no conflict of interest.  2018 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1