Kolubaev A.V. et. al. 2018 Vol. 20 No. 3

OBRABOTKAMETALLOV Vol. 20 No. 3 2018 133 MATERIAL SCIENCE 2. Vora H.D., Santhanakrishnan S., Harimkar S.P., Boetcher S.K.S., Dahotre N.B. Evolution of surface topography in one–dimensional laser machining of structural alumina. Journal of the European Ceramic Society , 2012, vol. 32, pp. 4205–4218. doi: 10.1016/j.jeurceramsoc.2012.06.015. 3. Zhang X., Huang T., Yang W., Xiao R., Liu Z., Li L. Microstructure and mechanical properties of laser beam–welded AA2060 Al–Li alloy. Journal of Materials Processing Technology , 2016, vol. 237, pp. 301–308. doi: 10.1016/j.jmatprotec.2016.06.021. 4. Gu Z., Yu S., Han L., Li X., Xu H. Influence of welding speed on microstructures and properties of ultra– high strength steel sheets in laser welding. ISIJ International , 2012, vol. 52, iss. 3, pp. 483–487. doi: 10.2355/ isijinternational.52.483. 5. Bataev I.A., Bataev A.A., Burov V.G., Lizunkova Ya.S., Zakharevich E.E. Structure of widmanstatten crystals of ferrite and cementite . Steel in Translation , 2008. vol. 38, iss. 8, pp. 684–687. doi: 10.3103/S0967091208080251. 6. Farabi N., Chen D.L., ZhouY. Fatigue properties of laser welded dual–phase steel joints. Procedia Engineering , 2010, vol. 2, pp. 835–843. doi: 10.1016/j.proeng.2010.03.090. 7. Xu W., Westerbaan D., Nayak S.S., Chen D.L., Goodwin F., Zhou Y. Tensile and fatigue properties of fiber laser welded high strength low alloy and DP980 dual–phase steel joints. Materials & Design , 2013, vol. 43, pp. 373– 383. doi: 10.1016/j.matdes.2012.07.017. 8. Guo W., Wan Z., Penga P., Jia Q., Zou G., Peng Y. Microstructure and mechanical properties of fiber laser welded QP980 steel. Journal of Materials Processing Technology , 2018, vol. 256, pp. 229–238. doi: 10.1016/j.jmat- protec.2018.02.015. 9. Zhang Y., Chen G., Zhou C., Jiang Y., Zhong P., Li S. Pores formation in laser–MAG welding of 42CrMo steel. Journal of Materials Processing Technology. 2017, vol. 245, pp. 309–317. doi: 10.1016/j.jmatprotec.2017.02.029. 10. Sun J., Nie P., Fenga K., Li Z., Guo B., Jiang E. The elimination of pores in laser welds of AISI 304 plate us- ing different shielding gases. Journal of Materials Processing Technology , 2017, vol. 248, pp. 56–63. doi: 10.1016/j. jmatprotec.2017.05.011. 11. Ren W., Lu F., Yang R., Liu X., Li Z. Liquation cracking in fiber laser welded joints of inconel 617. Journal of Materials Processing Technology , 2015, vol. 226, pp. 214–220. doi: 10.1016/j.jmatprotec.2015.07.004. 12. Seto N., Katayama S., Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation. Journal of Laser Applications , 2000, vol. 12 (6), pp. 245–250. doi: 10.2351/1.1324717. 13. Tsukamoto S. High speed imaging technique. Part 2 – High speed imaging of power beam welding phenom- ena. Science and Technology of Welding and Joining , 2011, vol. 16, iss. 1, pp. 44–55. doi: 10.1179/136217110X127 85889549949. 14. Lu F., Li X., Li Z., Tang X., Cui H. Formation and influence mechanism of keyhole-induced porosity in deep- penetration laser welding based on 3D transient modeling. International Journal of Heat and Mass Transfer , 2015, vol. 90, pp. 1143–1152. doi: 10.1016/j.ijheatmasstransfer.2015.07.041. 15. Zhao H., Niu W., Zhang B., Lei Y., Kodama M., Ishide T. Modeling of keyhole dynamics and porosity forma- tion considering the adaptive keyhole shape and three-phase coupling during deep–penetration laser welding. Jour- nal of Physics D: Applied Physics , 2011, vol. 44, pp. 485302/1–485302/13. doi: 10.1088/0022–3727/44/48/485302. 16. Smirnova N., Misyurov A. Features of structure formation during laser treatment. Vestnik Vestnik MGTU im. N.E. Baumana. Seriya: Mashinostroenie = Herald of the Bauman Moscow State Technical University. Series: Me- chanical Engineering , . 2012, no. 6, pp. 115–129. doi: 10.18698/2308–6033–2012–6–233. (In Russian). 17. Ignatov A. Power СО2 laser steel welding. Pt. 3. Fotonika = Photonics , 2009, no. 4, pp. 12–16. (In Russian). 18. Burov V.G., Alkhimov A.P., Bataev I.A., Golovin E.D., Kornienko E.E. Structure of steel welds produced by energy sources of high concentration. Doklady Akademii nauk vysshei shkoly Rossiiskoi Federatsii = Proceedings of the Russian higher school Academy of sciences , 2012, no. 1 (8), pp. 52–60. (In Russian). Conflicts of Interest The authors declare no conflict of interest.  2018 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1