Mahalov M.S. et. al. 2018 Vol. 20 No. 4

OBRABOTKAMETALLOV Vol. 20 No. 4 2018 19 TECHNOLOGY treatment of parts by surface plastic deformation. In 2 vol. Vol. 2]. Moscow, Mashinostroenie Publ., 2014. 444 p. ISBN 978-5-94275-709-0; ISBN 978-5-94275-711-3. 3. Bukatyi S.A. Kondratov A.P., Bukatyi A.S. [Thin-walled disks technological residual deformations prediction after surface plastic deformation hardening method]. Problemy i perspektivy razvitiya dvigatelestroeniya . Materialy dokladov Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Proceedings of the International scientific and technical conference “Problems and prospects of engine building development”]. Samara, 2006, vol. 1, pp. 183–184. (In Russian). 4. Zaides S.A., Emel’yanov V.N., Popov M.E., Kropotkina E.Yu., Bubnov A.S. Deformiruyushchaya obrabotka valov [Deforming treatment of shafts]. Irkutsk, ISTU Publ., 2013. 452 p. ISBN 978-508038-0869-5. 5. SidyakinYu.I., TruninA.V., ShevtsovA.N. Sfericheskaya model’ issledovaniya kontaktnoi uprugoplasticheskoi deformatsii [Spherical model of the contact elastoplastic strain research]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta = Izvestia Volgograd State Technical University , 2010, no. 12 (72), pp. 48–52. 6. Kuznetsov V.P., Gorgots V.G. Nonlinear dynamics of the elastic smoothing of surfaces. Russian Engineering Research , 2008, vol. 28, iss. 12, pp. 1201–1206. doi: 10.3103/S1068798X08120113. Translated from Vestnik mashinostroeniya , 2008, no. 12, pp. 61–65. 7. Wang W.W., Jia B.B., Yu J.B. A new flexible sheet metal forming method and its stamping process. The 14th IFToMMWorld Congress , Taipei, Taiwan, October 25–30, 2015. 8. Liou J.J., El-Wardany T.I. Finite element analysis of residual stress in Ti-6Al-4V alloy plate induced by deep rolling process under complex roller path. International Journal of Manufacturing Engineering , 2014, art. 786354. doi: 10.1155/2014/786354. 9. Sayahi M., Sghaier S., Belhadjsalah H. Finite element analysis of ball burnishing process: comparisons between numerical results and experiments. The International Journal of Advanced Manufacturing Technology , 2012, vol. 67 (5), pp. 1665–1673. doi: 10.1007/s00170-012-4599-9. 10. Gopinath A., LimA., Nagarajan B., Wong C.C., Maiti R., Castagne S. Introduction of enhanced compressive residual stress profiles in aerospace components using combined mechanical surface treatments. IOP Conference Series: Materials Science and Engineering, 2016, iss. 157 (1), p. 012013. doi: 10.1088/1757-899X/157/1/012013. 11. Altan T. Finite element modeling of roller burnishing process. Manufacturing Technology , 2017, vol. 54 (1), pp. 237–240. 12. Sartkulvanich P., Altan T., Jasso F., Rodriguez C. Finite element modeling of hard roller burnishing: an analy- sis on the effects of process parameters upon surface finish and residual stresses. Journal of Manufacturing Science and Engineering , 2007, vol. 129. doi: 10.1115/1.2738121. 13. Huang X., Sun J., Li J. Finite element simulation and experimental investigation on the residual stress-re- lated monolithic component deformation. The International Journal of Advanced Manufacturing Technology , 2015, vol. 77, pp. 1035–1041. doi: 10.1007/s00170-014-6533-9. 14. Ji X., Zhang X., Liang S. Predictive modeling of residual stress in minimum quantity lubrication machining. The International Journal of Advanced Manufacturing Technology , 2014, vol. 70, pp. 2159–2168. doi: 10.1007/ s00170-013-5439-2. 15. Su J.-C., Young K.A., Ma K., Srivatsa S., Morehouse J.B., Liang S.Y. Modeling of residual stresses in mill- ing. The International Journal of Advanced Manufacturing Technology , 2013, vol. 65, pp. 717–733. doi: 10.1007/ s00170-012-4211-3. 16. Jiang X., Li B., Yang J., Zuo X.Y., Li K. An approach for analyzing and controlling residual stress generation during high-speed circular milling. The International Journal of Advanced Manufacturing Technology , 2013, vol. 66, pp. 1439–1448. doi: 10.1007/s00170-012-4421-8. 17. Jiang X., Li B., Yang J., Zuo X.Y. Effects of tool diameters on the residual stress and distortion induced by milling of thin-walled part. The International Journal of Advanced Manufacturing Technology , 2013, vol. 68, pp. 175–186. doi: 10.1007/s00170-012-4717-8. 18. Chen J., Fang Q., Zhang L. Investigate on distribution and scatter of surface residual stress in ultra-high speed grinding. The International Journal of Advanced Manufacturing Technology , 2014, vol. 75, pp. 615–627. doi: 10.1007/s00170-014-6128-5. 19. Jiang Z., Liu Y., Li L., Shao W. A novel prediction model for thin plate deflections considering mill- ing residual stresses. The International Journal of Advanced Manufacturing Technology , 2014, vol. 74, pp. 37–45. doi: 10.1007/s00170-014-5952-y. 20. Ma Y., Feng P., Zhang J., Wu Z., Yu D. Energy criteria for machining-induced residual stresses in face mill- ing and their relation with cutting power. The International Journal of Advanced Manufacturing Technology , 2015, vol. 81, pp. 1023–1032. doi: 10.1007/s00170-015-7278-9.

RkJQdWJsaXNoZXIy MTk0ODM1