Savchenko N.L._et.al. 2018 Vol. 20 No. 4

OBRABOTKAMETALLOV Vol. 20 No. 4 2018 71 MATERIAL SCIENCE 3. Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Progress in Materials Science , 1981, vol. 26, iss. 2–4, pp. 123–403. doi: 10.1016/0079-6425(81)90001-3. 4. Fuchs J., Schneider C., Enzinger N. Wire-based additive manufacturing using an electron beam as heat source. Welding in the World , 2018, vol. 62, iss. 2, pp. 267–275. doi: 10.1007/s40194-017-0537-7. 5. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science , 2018, vol. 92, pp. 112–224. doi: 10.1016/j.pmatsci.2017.10.001. 6. Al-Bermani S.S., Blackmore M.L., Zhang W., Todd I. The origin of microstructural diversity, texture, and mechanical properties in electron beammelted Ti-6Al-4V. Metallurgical and Materials Transactions A , 2010, vol. 41, iss. 13, pp. 3422–3434. doi: 10.1007/s11661-010-0397-x. 7. Gulzar A., Akhter J.I., Ahmad M., Ali G., Mahmood M., Ajmal M. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting. Applied Surface Science , 2009, vol. 255, iss. 20, pp. 8527–8532. doi: 10.1016/J.APSUSC.2009.06.011. 8. Murr L.E., Esquivel E.V., Quinones S.A., Gaytan S.M., Lopez M.I., Martinez E.Y., Medina F., Hernandez D.H., Martinez E., Martinez J.L., Stafford S.W., Brown D.K., Hoppe T., Meyers W., Lindhe U., Wicker R.B. Microstructures andmechanical properties of electron beam-rapidmanufactured Ti–6Al–4Vbiomedical prototypes compared to wrought Ti–6Al–4V. Materials Characterization , 2009, vol. 60, iss. 2, pp. 96–105. doi: 10.1016/J.MATCHAR.2008.07.006. 9. Hrabe N., Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti– 6Al–4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part size. Materials Science and Engineering A , 2013, vol. 573, pp. 264–270. doi: 10.1016/J.MSEA.2013.02.064. 10. Kok Y., Tan X.P., Wang P., Nai M.L.S., Loh N.H., Liu E., Tor S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Materials and Design , 2018, vol. 139, pp. 565–586. doi: 10.1016/j.matdes.2017.11.021. 11. Basak A., Das S. Epitaxy and microstructure evolution in metal additive manufacturing. Annual Review of Materials Research , 2016, vol. 46, pp. 125–149. doi: 10.1146/annurev-matsci-070115-031728. 12. Karimzadeh F., Ebnonnasir A., Foroughi A. Artificial neural network modeling for evaluating of epitaxial growth of Ti6Al4V weldment. Materials Science and Engineering: A , 2006, vol. 432, iss. 1–2, pp. 184–190. doi: 10.1016/J.MSEA.2006.05.141. 13. Stanford N., Bate P.S. Crystallographic variant selection in Ti–6Al–4V. Acta Materialia , 2004, vol. 52, iss. 17, pp. 5215–5224. doi: 10.1016/J.ACTAMAT.2004.07.034. 14. Lin J., Lv Y., Liu Y., Sun Z., Wang K., Li Z., Wu Y., Xu B. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment. Journal of the Mechanical Behavior of Biomedical Materials , 2017, vol. 69, pp. 19–29. doi: 10.1016/J.JMBBM.2016.12.015. 15. Roy L. Variation in mechanical behavior due to different build directions of Ti6Al4V fabricated by electron beam : a thesis. The University of Alabama. Tuscaloosa, 2013. Available at: https://ir.ua.edu/handle/123456789/1891 (accessed 07.11.2018). 16. Baufeld B., Brandl E., Biest O. Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. Journal of Materials Processing Technology , 2011, vol. 211, pp. 1146–1158. doi: 10.1016/j.jmatprotec.2011.01.018. 17. Nassar A.R., Keist J.S., Reutzel E.W., Spurgeon T.J. Intra-layer closed-loop control of build plan during directed energy additivemanufacturing of Ti–6Al–4V. AdditiveManufacturing , 2015, vol. 6, pp. 39–52. Doi: 10.1016/j. addma.2015.03.005. 18. Wu B., Pan Z., Ding D., Cuiuri D., Li H., Fei Z. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy. Journal of Materials Processing Technology , 2018, vol. 258, pp. 97–105. doi: 10.1016/j.jmatprotec.2018.03.024. 19. Welsch G., Lütjering G., Gazioglu K., Bunk W. Deformation characteristics of age hardened Ti-6Al-4V. Metallurgical Transactions A , 1977, vol. 8, iss. 1, pp. 169–177. doi: 10.1007/BF02677278. 20. Lu W., Shi Y., Li X., Lei Y. Correlation between tensile strength and hardness of electron beam welded TC4- DT joints. Journal of Materials Engineering and Performance , 2013, vol. 22, iss. 6, pp. 1694–1700. doi: 10.1007/ s11665-012-0469-8. Conflicts of Interest The authors declare no conflict of interest.  2018 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY li- cense (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1