Vasilega D.S. et. al. 2019 Vol. 21 No. 1

OBRABOTKAMETALLOV Vol. 21 No. 1 2019 60 EQUIPMENT. INSTRUMENTS 22. Papsheva N.D.,Akushskaya O.M. Povyshenie effektivnosti protsessa narezaniya zubchatykh koles [Improving the efficiency of gear cutting]. Inzhenernyi vestnik Dona = Engineering Journal of Don , 2015, no. 2, pt. 2, p. 54. 23. Kanatnikov N.V., Kharlamov G.A. Povyshenie effektivnosti obrabotki pryamozubykh konicheskikh zubchatykh koles [Efficiency improvement of processing of straight-toothed bevel gears]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering , 2015, no. 3, pp. 8–16. 24. Hyatt G., Piber M., Chaphalkar N., Kleinhenz O., Mori M. A review of new strategies for gear production. Procedia CIRP , 2014, vol. 14, pp. 72–76. 25. Xu S., Zhang Y. The finite element modeling and analysis of involute spur gear. Advanced Materials Research , 2012, vol. 516–517, pp. 673–677. 26. Bahattin K. Analysis of spur gears by coupling finite and boundary element methods. Mechanics Based Design of Structures and Machines , 2006, vol. 34, iss. 3, pp. 307–324. 27. Forte P., Paoli A., Razionale A.V. A CAE approach for the stress analysis of gear models by 3D digital photoelasticity. International Journal of Interactive Design and Manufacturing , 2015, vol. 9, iss. 1, pp. 31–43. 28. Sun Q., Sun Y., Li L. Strength analysis and tooth shape optimization for involute gear with a few teeth. Advances in Mechanical Engineering , 2018, vol. 10, iss. 1. doi: 10.1177/1687814017751957. 29. Miklos I.Z., Miklos C., Alic C.I. Finite element analysis of cylindrical gear with mechanical event simulation. IOP Conference Series: Materials Science and Engineering , 2018, vol. 393, p. 012046. doi: 10.1088/1757- 899X/393/1/012046. 30. Balkov V.P., Kamenetskii L.I., Kiryutin A.S., Neginsky E.A., Ott O.S., Pishchulin D.N. Sovremennye tekhnologicheskie podkhody pri izgotovlenii tsilindricheskikh zubchatykh koles v usloviyakh melkoseriinogo proizvodstva i osobennosti rascheta i proektirovaniya zuboreznogo instrumenta [Up to date approaches for technology of small lot cylindrical gears production and special features of gear cutting tool computing and design engineering]. Metalloobrabotka = Metalworking , 2015, no. 4 (88), pp. 2–6. 31. Tsai S.-J., Ye S.-Y. A computerized approach for loaded tooth contact analysis of planetary gear drives considering relevant deformations. Mechanism and Machine Theory , 2018, vol. 122, pp. 252–278. doi: 10.1016/j. mechmachtheory.2017.12.026. 32. Lyu Y., Chen Y., Lin Y. The design formulae for skew line gear wheel structures oriented to the additive manufacturing technology based on strength analysis. Mechanical Sciences , 2017, vol. 8, iss. 2, pp. 369–383. doi: 10.5194/ms-8-369-2017. 33. Dong X., Liao C., Shin Y.C., Zhang H.H. Machinability improvement of gear hobbing via process simulation and tool wear predictions. The International Journal of Advanced Manufacturing Technology , 2016, vol. 86, iss. 9–12, pp. 2771–2779. 34. SrinivasanN., ShunmugamM.S. Limiting conditions in gear shaping for corrected involute gears. International Journal of Machine Tool Design and Research , 1983, vol. 23, iss. 4, pp. 227–235. 35. Artamonov E.V., Kireev V.V. The compound hob for processing gearbox pinions used in hoist for well repairs. Applied Mechanics and Materials , 2015, vol. 770, pp. 469–475. 36. Artamonov E.V., Kireev V.V., Zyryanov V.A. Improving the efficiency of hobbing mills. Russian Engineering Research , 2017, vol. 37, no. 5, pp. 447–449. doi: 10.3103/S1068798X17050057. Conflicts of Interest The authors declare no conflict of interest.  2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1