Vasilega D.S. et. al. 2019 Vol. 21 No. 1
OBRABOTKAMETALLOV Vol. 21 No. 1 2019 60 EQUIPMENT. INSTRUMENTS 22. Papsheva N.D.,Akushskaya O.M. Povyshenie effektivnosti protsessa narezaniya zubchatykh koles [Improving the efficiency of gear cutting]. Inzhenernyi vestnik Dona = Engineering Journal of Don , 2015, no. 2, pt. 2, p. 54. 23. Kanatnikov N.V., Kharlamov G.A. Povyshenie effektivnosti obrabotki pryamozubykh konicheskikh zubchatykh koles [Efficiency improvement of processing of straight-toothed bevel gears]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering , 2015, no. 3, pp. 8–16. 24. Hyatt G., Piber M., Chaphalkar N., Kleinhenz O., Mori M. A review of new strategies for gear production. Procedia CIRP , 2014, vol. 14, pp. 72–76. 25. Xu S., Zhang Y. The finite element modeling and analysis of involute spur gear. Advanced Materials Research , 2012, vol. 516–517, pp. 673–677. 26. Bahattin K. Analysis of spur gears by coupling finite and boundary element methods. Mechanics Based Design of Structures and Machines , 2006, vol. 34, iss. 3, pp. 307–324. 27. Forte P., Paoli A., Razionale A.V. A CAE approach for the stress analysis of gear models by 3D digital photoelasticity. International Journal of Interactive Design and Manufacturing , 2015, vol. 9, iss. 1, pp. 31–43. 28. Sun Q., Sun Y., Li L. Strength analysis and tooth shape optimization for involute gear with a few teeth. Advances in Mechanical Engineering , 2018, vol. 10, iss. 1. doi: 10.1177/1687814017751957. 29. Miklos I.Z., Miklos C., Alic C.I. Finite element analysis of cylindrical gear with mechanical event simulation. IOP Conference Series: Materials Science and Engineering , 2018, vol. 393, p. 012046. doi: 10.1088/1757- 899X/393/1/012046. 30. Balkov V.P., Kamenetskii L.I., Kiryutin A.S., Neginsky E.A., Ott O.S., Pishchulin D.N. Sovremennye tekhnologicheskie podkhody pri izgotovlenii tsilindricheskikh zubchatykh koles v usloviyakh melkoseriinogo proizvodstva i osobennosti rascheta i proektirovaniya zuboreznogo instrumenta [Up to date approaches for technology of small lot cylindrical gears production and special features of gear cutting tool computing and design engineering]. Metalloobrabotka = Metalworking , 2015, no. 4 (88), pp. 2–6. 31. Tsai S.-J., Ye S.-Y. A computerized approach for loaded tooth contact analysis of planetary gear drives considering relevant deformations. Mechanism and Machine Theory , 2018, vol. 122, pp. 252–278. doi: 10.1016/j. mechmachtheory.2017.12.026. 32. Lyu Y., Chen Y., Lin Y. The design formulae for skew line gear wheel structures oriented to the additive manufacturing technology based on strength analysis. Mechanical Sciences , 2017, vol. 8, iss. 2, pp. 369–383. doi: 10.5194/ms-8-369-2017. 33. Dong X., Liao C., Shin Y.C., Zhang H.H. Machinability improvement of gear hobbing via process simulation and tool wear predictions. The International Journal of Advanced Manufacturing Technology , 2016, vol. 86, iss. 9–12, pp. 2771–2779. 34. SrinivasanN., ShunmugamM.S. Limiting conditions in gear shaping for corrected involute gears. International Journal of Machine Tool Design and Research , 1983, vol. 23, iss. 4, pp. 227–235. 35. Artamonov E.V., Kireev V.V. The compound hob for processing gearbox pinions used in hoist for well repairs. Applied Mechanics and Materials , 2015, vol. 770, pp. 469–475. 36. Artamonov E.V., Kireev V.V., Zyryanov V.A. Improving the efficiency of hobbing mills. Russian Engineering Research , 2017, vol. 37, no. 5, pp. 447–449. doi: 10.3103/S1068798X17050057. Conflicts of Interest The authors declare no conflict of interest. 2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1