Golyshev A.A. et. al. 2019 Vol. 21 No. 1

OBRABOTKAMETALLOV Vol. 21 No. 1 2019 91 MATERIAL SCIENCE References 1. Choong Y.C., Maleksaeedi S., Eng H., Wei J., Su P. 4D printing of high performance shape memory polymer using stereolithography. Materials & Design , 2017, no. 126, pp. 219–225. doi: 10.1016/j.matdes.2017.04.049. 2. Gan M., Wong C. Properties of selective laser melted spodumene glass-ceramic. Journal of the European Ceramic Society , 2017, vol. 37, iss. 13, pp. 4147–4154. doi: 10.1016/j.jeurceramsoc.2017.04.060. 3. Gu D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews , 2012, vol. 57, iss. 3, pp. 133–164. doi: 10. 1179/1743280411Y.0000000014. 4. Lu Q., Wong C. Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual and Physical Prototyping , 2018, vol. 13, iss. 2, pp. 39–48. doi: 10.10 80/17452759.2017.1351201. 5. Prashanth K., Debalina В., Wang Z., Gostin P., Gebert A., Calin M. Eckert J. Tribological and corrosion properties of Al-12Si produced by selective laser melting. Journal of Materials Research , 2014, vol. 29, iss. 17, pp. 2044–2054. doi: 10.1557/jmr.2014.133. 6. Bartolomeu F., Buciumeanu M., Pinto E., Alves N., Carvalho O., Silva F.S., Miranda G. 316L stainless steel mechanical and tribological behavior – a comparison between selective laser melting, hot pressing and conventional casting. Additive Manufacturing , 2017, no. 16, pp. 81–89. doi: 10.1016/j.addma.2017.05.007. 7. Suryawanshi J., Prashanth K., Scudino S., Eckert J., Prakash O., Ramamurty U. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Materialia , 2016, no. 7/5, pp. 285–294. doi: 10.1016/j.actamat.2016.06.009. 8. Nickel A.H., Barnett D.M., Prinz F.B. Thermal stresses and deposition patterns in layered manufacturing. Materials Science and Engineering: A , 2001, no. 317 (1–2), pp. 59–64. doi: 10.1016/S0921-5093(01)01179-0. 9. Vastola G., Zhang G., Pei Q.X., ZhangY.W. Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Additive Manufacturing , 2016, no. 12, pp. 231–239. doi: 10.1016/j.addma.2016.05.010. 10. Thijs L., Verhaeghe F., Craeghs T., Humbeeck J. Van, Kruth J.P. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia , 2010, vol. 58, pp. 3303–3312. doi: 10.1016/j. actamat.2010.02.004. 11. Hanzl P., Zetek M., Baksa T., Kroupa T. The influence of processing parameters on the mechanical properties of SLM parts. Procedia Engineering , 2015, vol. 100, pp. 1405–1413. doi: 10.1016/j.proeng.201S.01.510. 12. Vaezi M., Chianrabutra S., Mellor B., Yang S. Multiple material additive manufacturing – part 1: a review. Virtual and Physical Prototyping , 2013, vol. 8, pp. 19–50. doi: 10.1080/17452759.2013.778175. 13. Fomin V.M., Golyshev A.A., Kosarev V.F., Malikov A.G., Orishich A.M., Ryashin N.S., Filippov A.A., Shikalov V.S. Creation of heterogeneous materials on the basis of B4C and NI powders by the method of cold spraying with subsequent layer-by-layer laser treatment. Journal of Applied Mechanics and Technical Physics , 2017, vol. 58, iss. 5, pp. 947–955. doi: 10.1134/S0021894417050224. 14. Miracle D.B. Metal matrix composites from science to technological significance. Composites Science and Technology , 2005, vol. 65, no. 15–16, pp. 2526–2540. doi: 10.1016/j.compscitech.2005.05.027. 15. Rodriguez J., Martin A., Fernandez R., Fernandez J.E. An experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear , 2003, no. 255 (7–12), pp. 950–955. doi: 10.1016/S0043-1648(03) 00162-5. 16. ChaliampaliasD.,VourliasG., PavlidouE., SkolianosS.,ChrissafisK., StergioudisG.Comparativeexamination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings. Applied Surface Science , 2009, vol. 255, iss. 6, pp. 3605–3612. doi: 10.1016/j.apsusc.2008.10.006. 17. Guo C., Zhou J., Chen J., Zhao J., Yu Y., Zhou H. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear , 2011, vol. 270, iss. 7–8, pp. 492–498. doi: 10.1016/j. wear.2011.01.003. 18. Tobar M., Alvarez C., Amado J., Rodriguez G., Yanez A. Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel. Surface and Coatings Technology , 2006, no. 200, pp. 6313– 6317. doi: 10.1016/j.surfcoat.2005.11.093. 19. Bonny K., Baets P., Vleugels J., Huang S., Lauwers B. Dry reciprocating sliding friction and wear response of WC-Ni cemented carbides. Tribology Letters , 2008, vol. 31, iss. 3, pp. 199–209. doi: 10.1007/s11249-008-9352-z.

RkJQdWJsaXNoZXIy MTk0ODM1