Konovalenko I.S. et. al. 2019 Vol. 21 No. 1
OBRABOTKAMETALLOV Vol. 21 No. 1 2019 107 MATERIAL SCIENCE [Formation of amultiscale structure in surface layers and resistance of cermet alloy tomechanical action]. Fizicheskaya mezomekhanika = Physical Mesomechanics , 2011, vol. 14, no. 6, pp. 23–34. (In Russian). 24. Mishnaevsky L.Jr., Levashov E., Valiev R.Z., Segurado J., Sabirov I., Enikeev N., Prokoshkin S., Solov’yov A.V., Korotitskiy A., Gutmanas E., Gotman I., Rabkin E., Psakhie S., Dluhoš L., Seefeldt M., Smolin A. Nanostructured titanium-based materials for medical implants: modeling and development. Materials Science and Engineering R , 2014, vol. 81, pp. 1–19. doi: 10.1016/j.mser.2014.04.002. 25. Pei Y.T., Ouyang J.H., Lei T.C., Zhou Y. Laser clad Zr0 2 -Y 2 0 3 ceramic/Ni-base alloy composite coatings. Ceramics International , 1995, vol. 21, pp. 131–136. doi: 10.1016/0272-8842(95)95884-K. 26. Wang W., Oaki Y., Ohtsuki Ch., Nakano T., Hiroaki I. Formation of c-axis-oriented columnar structures through controlled epitaxial growth of hydroxyapatite. Journal of Asian Ceramic Societies , 2013, vol. 1, pp. 143– 148. doi: 10.1016/j.jascer.2013.03.009. 27. Biniuc C., Istrate B., Munteanu C., Dorin L. Increased resistance to mechanical shock of metallic materials by metal-ceramic surface coatings. Key Engineering Materials , 2015, vol. 638, pp. 316–321. doi: 10.4028/www. scientific.net/KEM.638.316. 28. Chiang S.S., Marshall D.B., EvansA.G. Asimple method for adhesion measurements. Surfaces and interfaces in ceramic and ceramic-metal systems . Ed. by J. Pask, A. Evans. New York, Springer US, 1981, pp. 603–617. 29. Shilko E.V., Psakhie S.G., Schmauder S., PopovV.L.,Astafurov S.V., SmolinA.Yu. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure. Computational Materials Science, 2015, vol. 102, pp. 267–285. doi: 10.1016/j.commatsci.2015.02.026. 30. Smolin A.Yu., Shilko E.V., Astafurov S.V., Psakhie S.G. Modeling mechanical behaviors of composites with various ratios of matrix-inclusion properties using movable cellular automaton method. Defence Technology , 2015, vol. 11, pp. 18–34. doi: 10.1016/j.dt.2014.08.005. 31. Potyondy D.O., Cundall P.A. Abonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences , 2004, vol. 41, pp. 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011. 32. Bicanic N. Discrete element methods. Stein E, de Borst R, Hughes TJR, editors. Encyclopaedia of computational mechanics . Ed. by E. Stein, R. De Borst, T.J.R. Hughes. 2nd ed. John Wiley & Sons, Ltd, 2017, pp. 1–38. doi: 10.1002/9781119176817.ecm2006. 33. Petersen K.E. Silicon as a mechanical material. Proceedings of the IEEE , 1982, vol. 70, no. 5, pp. 420–457. 34. Dudova N., Kaibyshev R., Valitov V. Short-range ordering and the abnormal mechanical properties of a Ni-20% Cr alloy. The Physics of Metals and Metallography , 2010, vol. 08 (6), pp. 625–633. doi: 10.1134/S0031918X0912014X. 35. Alejano L.R., Bobet A. Drucker–Prager criterion. Rock Mechanics and Rock Engineering , 2012, vol. 45 (6), pp. 995–999. doi: 10.1007/s00603-012-0278-2 . 36. Park K., Paulino G.H. Cohesive zone models: a critical review on traction-separation relationships across fracture surfaces. Applied Mechanics Reviews, 2011, vol. 64, pp. 060802/1–060802/20. doi: 10.1115/1.4023110. 37. Geubelle P.H., Baylor J.S. Impact-induced delamination of composites: a 2D simulation. Composites Part B: Engineering , 1998, vol. 29, pp. 589–602. doi: 10.1016/S1359-8368(98)00013-4. 38. Psakhie S., Ovcharenko V., Baohai Yu., Mokhovikov A. Influence of features of interphase boundaries on mechanical properties and fracture pattern in metal-ceramic composites. Journal of Materials Science and Technology, 2013, vol. 29, pp. 1025–1034. doi: 10.1016/j.jmst.2013.08.002. 39. Smirnov S.V., Konovalov A.V., Myasnikova M.V., Khalevitsky Yu.V., Smirnov A.S., Igumnov A.S. A numerical study of plastic strain localization and fracture inAl/SiC metal matrix composite. Physical Mesomechanics , 2018, vol. 21 (4), pp. 305–313. doi: 10.1134/S1029959918040045. 40. Mishnaevsky L. Nanostructured interfaces for enhancing mechanical properties of composites: compu- tational micromechanical studies. Composites Part B: Engineering , 2015, vol. 68, pp. 75–84. doi: 10.1016/j. compositesb.2014.08.029. 41. Shinohara K. Relationship between work-hardening exponent and load dependence of Vickers hardness in copper. Journal of Materials Science , 1993, vol. 28, pp. 5325–5329. 42. Lan H., Venkatesh T.A. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials. P hilosophical Magazine, 2014, vol. 94, no. 1, pp. 35–55. doi: 10.1080/14 786435.2013.839889. Conflicts of Interest The authors declare no conflict of interest. 2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1