Rechenko D.S. 2019 Vol. 21 No. 2

OBRABOTKAMETALLOV Vol. 21 No. 2 2019 25 TECHNOLOGY 5. Connolly R., Rubenstein C. The mechanics of continuous chip formation in orthogonal cutting. International Journal of Machine Tool Design and Research , 1968, vol. 8, pp. 159–187. DOI: 10.1016/0020-7357(68)90003-6. 6. Abdelmoneim M.E., Scrutton R.F. Tool edge roundness and stable built-up formation in finished machining. Journal of Engineering for Industry , 1974, vol. 96 (4), pp. 1258–1267. 7. Komanduri R. Some aspects of machining with negative rake tools simulating grinding. International Journal of Machine Tool Design and Research , 1971, vol. 11, pp. 223–233. DOI: 10.1016/0020-7357(71)90027-8. 8. Yuan Z.J., Zhou M., Dong S. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. Journal of Material Processing Technology , 1996, vol. 62, pp. 327– 330. DOI: 10.1016/S0924-0136(96)02429-6. 9. Liu X., DeVor R.E., Kapoor S.G. An analytical model for the prediction of minimum chip thickness in micromachining. Journal of Manufacturing Science and Engineering, 2006, vol. 128 (2), pp. 474–481. DOI: 10.1115/1.2162905. 10. Shimada S., Ikawa N., Tanaka H., Ohmori G., Uchikoshi J., Yoshinaga H. Feasibility study of ultimate accuracy in microcutting using molecular dynamics simulation. CIRP Annals – Manufacturing Technology , 1993, vol. 42, pp. 91–94. DOI: 10.1016/S0007-8506(07)62399-3. 11. Vogler M.P., Devor R.E., Kapoor S.G. On modeling and analysis of machining performance in micro- endmilling. Part II: Cutting force prediction. Journal of Manufacturing Science and Engineering , 2004, vol. 126 (4), pp. 695–705. DOI: 10.1115/1.1813471. 12. ChuzhoyL., Devor R.E., Kapoor S.G., BammannD.J.Microstructure-levelmodeling of ductile ironmachining. Journal of Manufacturing Science and Engineering , 2002, vol. 124, pp. 162–169. DOI: 10.1115/1.1455642. 13. L’vov N.P. Determining the minimum possible chip thickness. Machine Tools , 1969, vol. 40, p. 45. 14. Basuray P.K., Misra B.K., Lal G.K. Transition from ploughing to cutting during machining with blunt tools. Wear , 1977, vol. 43 (3), pp. 341–349. DOI: 10.1016/0043-1648(77)90130-2. 15. Rechenko D.S., Popov A.Y., Belan D.Y., Kuznetsov A.A. Hard-alloy metal-cutting tool for the finishing of hard materials. Russian Engineering Research , 2017, vol. 37 (2), pp. 148–149. DOI: 10.3103/S1068798X17020162. 16. Yanyushkin A., Lobanov D., Arkhipov P., Ivancivsky V. Contact processes in grinding. Applied Mechanics and Materials , 2015, vol. 788, pp. 17–21. DOI: 10.4028/www.scientific.net/AMM.788.17. 17. Li B., Ni J., Jianguo Y., Liang S.Y. Study on high-speed grinding mechanisms for quality and process efficiency. International Journal of Advanced Manufacturing Technology , 2014, vol. 70, pp. 813–819. 18. Wang C., Fang Q., Chen J., Liu Y., Jin T. Subsurface damage in high-speed grinding of brittle materials considering kinematic characteristics of the grinding process. International Journal of Advanced Manufacturing Technology , 2016, vol. 83, pp. 937–948. DOI: 10.1007/s00170-015-7627-8. 19. Musil J. Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness. Surface & Coatings Technology , 2012, vol. 207, pp. 50–65. DOI: 10.1016/j.surfcoat.2012.05.073. 20. Musil J. Recent progress in hard nanocomposite coatings. Pt. 2. Galvanotechnik , 2010, vol. 101, no. 9, pp. 2116–2121. Conflicts of Interest The author declare no conflict of interest.  2019 The Author. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1