Skorynina P.A. et. al. 2019 Vol. 21 No. 2

OBRABOTKAMETALLOV Vol. 21 No. 2 2019 108 MATERIAL SCIENCE References 1. Gatey A.M., Hosmani S.S., Singh R.P. Surface mechanical attrition treated AISI 304L steel: role of process parameters. Surface Engineering , 2016, vol. 32, iss. 1, pp. 69–78. DOI: 10.1179/1743294415Y.0000000056. 2. Ni Z., Wang X., Wang J., Wu E. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening. Physica B-Condensed Matter , 2003, vol. 334, pp. 221– 228. DOI: 10.1016/S0921-4526(03)00069-3. 3. Mordyuk B.N., Prokopenko G.I., Vasylyev M.A., Iefimov M.O. Effect of structure evolution induced by ultra- sonic peening on the corrosion behavior of AISI-321 stainless steel. Materials Science and Engineering: A ., 2007, vol. 458, iss. 1–2, pp. 253–261. DOI: 10.1016/j.msea.2006.12.049. 4. Baraz V.R., Kartak B.R., Mineeva O.N. Special features of friction hardening of austenitic steel with unstable γ-phase. Metal Science and Heat Treatment , 2011, vol. 52, iss. 9, pp. 473–475. DOI: 10.1007/s11041-010-9302-x. 5. Makarov A.V., Skorynina P.A., Osintseva A.L., Yurovskikh A.S., Savrai R.A. Improving the tribological prop- erties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2015, no. 4 (69), pp. 80–92. DOI: 10.17212/1994- 6309-2015-4-80-92. (In Russian). 6. Baraz V.R., Fedorenko O.N. Special features of friction treatment of steels of the spring class. Metal Science and Heat Treatment , 2016, vol. 57, iss. 11–12, pp. 652–655. DOI: 10.1007/s11041-016-9937-3. 7. Makarov A.V., Skorynina P.A., Yurovskikh A.S., Osintseva A.L. Effect of the conditions of the nanostructur- ing frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel. Physics of Metals and Metallography , 2017, vol. 118, iss. 12, pp. 1225–1235. DOI: 10.1134/S0031918X17120092. 8 . Narkevich N.A., Shulepov I.A., Mironov Yu.P. Structure, mechanical, and tribotechnical properties of an aus- tenitic nitrogen steel after frictional treatment. Physics of Metals and Metallography , 2017, vol. 118, iss. 4, pp. 339– 406. DOI: 10.1134/S0031918X17020090. 9. Hajian M., Abdollah-zadeh A., Rezaei-Nejad S.S., Assadi H., Hadavi S.M.M., Chung K., Shokouhimehr M. Microstruсture and mechanical properties of friction stir processed AISI 316L stainless steel. Materials and Design , 2015, vol. 67, pp. 82–94. DOI: 10.1016/j.matdes.2014.10.082. 10. Liang W. Surface modification of AISI 304 austenitic stainless steel by plasma nitriding. Applied Surface Science , 2003, vol. 211, pp. 308–314. DOI: 10.1016/S0169-4332(03)00260-5. 11. Devaraju A., Elayaperumal A., Alphonsa J., Kailas S.V., Venugopal S. Microstructure and dry sliding wear resistance evaluation of plasma nitride austenitic stainless steel type AISI 316LN against different sliders. Surface and Coatings Technology , 2012, vol. 207, pp. 406–412. DOI: 10.1016/j.surfcoat.2012.07.031. 12. Gavrilov N.V., Mamaev A.S., Chukin A.V. Nitriding of stainless steel in plasma of a pulse electron beam. Technical Physics Letters , 2016, vol. 42, iss. 5, pp. 491–494. DOI: 10.1134/S1063785016050096. 13. Gavrilov N.V., Mamaev A.S., Chukin A.V. Nitriding of stainless steel in electron beam plasma in the pulsed and DC generation modes. Journal of Surface Investigation , 2017, vol. 11, iss. 6, pp. 1167–1172. DOI: 10.1134/ S1027451017060076. 14. Cao Y., Ernst F., Michal G.M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature. Acta Materialia , 2003, vol. 51, pp. 4171–4181. DOI: 10.1016/S1359-6454(03)00235-0. 15. Tokaji K., Kohyama K., Masayuki A. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing. International Journal of Fatigue , 2004, vol. 26, iss. 5, pp. 543–551. DOI: 10.1016/j. ijfatigue.2003.08.024. 16. Ernst F., Cao Y., Michal G.M., Heuer A.H. Carbide precipitation in austenitic stainless steel carburized at low temperature. Acta Materialia , 2007, vol. 55, pp. 1895–1906. DOI: 10.1016/j.actamat.2006.09.049. 17. Cheng L.H., Hwang K.S. Surface hardening of powder injection molded 316l stainless steels through low-temperature carburization. Metallurgical and Materials Transactions A , 2013, vol. 44A, iss. 2, pp. 827–834. DOI: 10.1007/s11661-012-1458-0. 18. Ceschini L., Chiavari C., Marconi A., Martini C. Influence of the countermaterial on the dry sliding friction and wear behaviour of low temperature carburized AISI316L steel. Tribology International , 2013, vol. 67, pp. 36–43. DOI: 10.1016/j.triboint.2013.06.013. 19. Ma F., Pan L., Zhang L.J., Zhu Y.F., Li P., Yang M. Structure and wear resistance of 0Cr17Ni14Mo2 austenitic stainless steel after low temperature gas carburising. Materials Research Innovations , 2014, vol. 18, pp. 1023–1027. DOI: 10.1179/1432891714Z.000000000551. 20. Sun Y. Tribocorrosion behavior of low temperature plasma carburized stainless steel. Surface and Coatings Technology , 2013, vol. 228, pp. S342–S348. DOI: 10.1016/j.surfcoat.2012.05.105.

RkJQdWJsaXNoZXIy MTk0ODM1