Kovalevskaya Zh.G. et. al. 2019 Vol. 21 No. 2

OBRABOTKAMETALLOV Vol. 21 No. 2 2019 134 MATERIAL SCIENCE References 1. Zhao D., Chang K., Ebel T., Nie H., Willumeit R., Pyczak F. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloy as biomedical material. Journal of the Mechanical Behavior of Biomedical Materials , 2013, vol. 28, pp. 171–182. DOI: 10.1016/j.jmbbm.2013.08.013. 2. Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomaterialia , 2012, vol. 8, iss. 11, pp. 3888–3903. DOI: 10.1016/j.actbio.2012.06.037. 3. Xu L., Xiao S.L., Tian J., Chen Y., Huang Y. Microstructure and dry wear properties of Ti-Nb alloys for dental prostheses. Transactions of Nonferrous Metals Society of China , 2009, vol. 19, iss. 3, pp. 639–644. DOI: 10.1016/ S1003-6326(10)60124-0. 4. Sharkeev Yu., Komarova E., Sedelnikova M., Sun Z., Zhu Q., Zhang J., Tolkacheva T., Uvarkin P. Structure and properties of micro-arc calcium phosphate coatings on pure titanium and Ti-40Nb alloy. Transactions of Nonferrous Metals Society of China , 2017, vol. 27, iss. 1, pp. 125–133. DOI: 10.1016/S1003-6326(17)60014-1. 5. Cremasco A., Osório W.R., Freire C.M.A., Garcia A., Caram R. Electrochemical corrosion behavior of a Ti- 35Nb alloy for medical prostheses. Electrochimica Acta , 2008, vol. 53, iss. 14, pp. 4867–4874. DOI: 10.1016/j. electacta.2008.02.011. 6. Ozaki T., Matsumoto H., Watanabe S., Hanada S. Beta Ti alloys with low Young’s modulus. Materials Transactions , 2004, vol. 45, iss. 8, pp. 2776–2779. DOI: 10.2320/matertrans.45.2776. 7. Niinomi M., Liu Y., Nakai M., Liu H., Li H. Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regenerative Biomaterials , 2016, vol. 3, iss. 3, pp. 173–185. DOI: 10.1093/rb/rbw016. 8. Moffat D.L., Kattner U.R. The stable and metastable Ti-Nb phase diagrams. Metallurgical Transactions A , 1988, vol. 19, iss. 10, pp. 2389–2397. DOI: 10.1007/BF02645466. 9. Andreev A.L., Anoshkin N.F., Bochvar G.A., et al. Plavka i lit’e titanovykh splavov . Titanovye splavy [Melting of titanium alloys. Titanium alloys]. Moscow, Metallurgiya Publ., 1994. 368 p. 10. Gubkin I.N. Zametki o tekhnologii vyplavki i pererabotki Nb-Ti slitkov v prutki [Notes about technology of melting and processing of Nb-Ti ingots into rods]. Moscow, VNIINM Publ., 2006. 115 p. 11. Ozaltin K., Chrominski W., Kulczyk M., Panigrahi A., Horky J., Zehetbauer M., Lewandowska M. Enhancement of mechanical properties of biocompatible Ti-45Nb alloy by hydrostatic extrusion. Journal of Materials Science , 2014, vol. 49, iss. 20, pp. 6930–6936. DOI: 10.1007/s10853-014-8397-7. 12. Panigrahia A., Sulkowskia B., Waitza T., Ozaltinc K., Chrominskic W., Pukenasd A., Horkya J., Lewandows- kac M., Skrotzkid W., Zehetbauera M. Mechanical properties, structural and texture evolution of biocompatible Ti- 45Nb alloy processed by severe plastic deformation. Journal of the Mechanical Behavior of Biomedical Materials , 2016, vol. 62, pp. 93–105. DOI: 10.1016/j.jmbbm.2016.04.042. 13. Völker B., Jäger N., Calin M., Zehetbauer M., Eckert J., Hohenwarter A. Influence of testing orientation on mechanical properties of Ti45Nb deformed by high pressure torsion. Materials and Design , 2017, vol. 114, pp. 40– 46. DOI: 10.1016/j.matdes.2016.10.035. 14. Panigrahi A., Bönisch M., Waitz T., Schafler E., Calin M., Eckert J., Skrotzki W., Zehetbauer M. Phase trans- formations and mechanical properties of biocompatible Ti-16.1Nb processed by severe plastic deformation. Journal of Alloys and Compounds , 2015, vol. 628, pp. 434–441. DOI: 10.1016/j.jallcom.2014.12.159 15. Ma J., Karaman I., Kockar B., Maier H.J., Chumlyakov Y.I. Severe plastic deformation of Ti74Nb26 shape memory alloys. Materials Science and Engineering: A , 2011, vol. 528, iss. 25–26, pp. 7628–7635. DOI: 10.1016/j. msea.2011.06.051. 16. Cojocaru V.D., Raducanu D., Gloriant T., Cinca I. Texture evolution in a Ti-Ta-Nb alloy processed by severe plastic deformation. JOM , 2012, vol. 64, iss. 5, pp. 572–581. DOI: 10.1007/s11837-012-0312-6. 17. Li Y., Yang C., Zhao H., Qu S., Li X., Li Y. New Developments of Ti-based alloys for biomedical applica- tions. Materials , 2014, vol. 7, iss. 3, pp. 1709–1800. DOI: 10.3390/ma7031709. 18. Shahali H., Jaggessar A., Yarlagadda P. Kdv. Recent advances in manufacturing and surface modification of titanium orthopaedic applications. Procedia Engineering , 2017, vol. 174, pp. 1067–1076. DOI: 10.1016/j.pro- eng.2017.01.259. 19. Zhuravleva K., Bönisch M., Prashanth K.G., Hempel U., Helth A., Gemming T., Calin M., Scudino S., Schul- tz L., Eckert J., Gebert A. Production of porous β-type Ti-40Nb alloy for biomedical applications: comparison of selective laser melting and hot pressing. Materials , 2013, vol. 6, iss. 12, pp. 5700–5712. DOI: 10.3390/ma6125700. 20. Schwab H., Prashanth K.G., Lober L., Kuhn U., Eckert J. Selective laser melting of Ti-45Nb alloy. Material s, 2015. vol. 5, iss. 2, pp. 686–694. DOI: 10.3390/met5020686.

RkJQdWJsaXNoZXIy MTk0ODM1