Aleutdinova M.I. et. al. 2019 Vol. 21 No. 2
OBRABOTKAMETALLOV Vol. 21 No. 2 2019 144 MATERIAL SCIENCE References 1. El-Hofya M.H., Soo S.L., Aspinwall D.K., Sim W.M., Pearson D., M’Saoubi R., Harden P. Tool temperature in slotting of CFRPcomposites. ProcediaManufacturing , 2017, vol. 10, pp. 371–381. DOI: 10.1016/j.promfg.2017.07.007. 2. Kuznetsov V.P., Tarasov S.Yu., Dmitriev A.I. Nanostructuring burnishing and subsurface shear instability. Journal of Materials Processing Technology , 2015, vol. 217, pp. 327–335. DOI: 10.1016/j.jmatprotec.2014.11.023. 3. Jerez-Mesa R., Landon Y., Travieso-Rodriguez J.A., Dessein G., Lluma-Fuente J., Wagner V. Topological surface integrity modification of AISI 1038 alloy after vibration-assisted ball burnishing. Surface & Coatings Technology , 2018, vol. 349, pp. 364–377. DOI: 10.1016/j.surfcoat.2018.05.061. 4. Möhring H.-Chr., Kushner V., Storchak M., Stehle T. Temperature calculation in cutting zones . CIRP Annals – Manufacturing Technology , 2018, vol. 67, pp. 61–64. DOI: 10.1016/j.cirp.2018.03.009. 5. Zhou Y., Zhu H., Zuo X., Yang Ji. Chaotic characteristics of measured temperatures during sliding friction. Wear , 2014, vol. 317, pp. 17–25. DOI: 10.1016/j.wear.2014.04.025. 6. Ü st ü nyagiz E., Nielsen C.V., Christiansen P., Martins P.A.F., Altan T., Bay N. A combined numerical and experimental approach for determining the contact temperature in an industrial ironing operation. Journal of Materials Processing Technology , 2019, vol. 264, pp. 249–258. DOI: 10.1016/j. jmatprotec.2018.09.015. 7. Li Ji., Tao Bo, Huang S., Yin Zh. Built-in thin film thermocouples in surface textures of cemented carbide tools for cutting temperature measurement. Sensors and Actuators A. , 2018, vol. 279, pp. 663 – 670. DOI: 10.1016/j. sna.2018.07.017. 8. Saez-de-Buruaga M., Soler D., Aristimu ñ o P.X., Esnaola J.A., Arrazola P.J. Determining tool/chip temperatures from thermography measurements in metal cutting. Applied Thermal Engineering , 2018, vol. 145, pp. 305 – 314. DOI: 10.1016/j.applthermaleng.2018.09.051. 9. Abukhshi N.A., Mativenga P.T., Sheik M.A. Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. International Journal of Machine Tools & Manufacture , 2006, vol. 46, pp. 782 – 800. DOI: 10.1016/j.ijmachtools.2005.07.024. 10. Aleutdinova M.I., Fadin V.V., Rubtsov V.E. Dry slipping steel–steel contact at high current density. Steel in Translation , 2017, vol. 47 (1), pp. 17–20. DOI: 10.3103/S0967091217010028. 11. Vavilov V.P. Infrakrasnaya termografiya i teplovoi kontrol’ [Infrared termografiya and thermal control]. Moscow, Spektr Publ., 2009. 544 p. ISBN 978-5-904270-05-06. 12. Fadin V.V., Aleutdinova M.I., Kolubaev A.V. Effect of high-density electric current on wear and average temperature of steel/steel triboelectric contact. Journal of Friction and Wear , 2018, vol. 39, iss. 4, pp. 294–298. DOI: 10.3103/S1068366618040050. 13. Kreith F., Black W.Z. Basic heat transfer . New York, Harper and Row, 1980. 512 p. ISBN 9780700225187. 14. Galashev A.N., Khviyuzov M.A. Koeffitsient teplovogo izlucheniya instrumental’nykh stalei [Coefficient of thermal radiation tool steels]. NovaInfo.Ru. , 2016, vol. 3, no. 53, pp. 34–35. (In Russian). 15. Kennedy F.E., Lu Yu., Baker I. Contact temperatures and their influence on wear during pin-on-disk tribotesting. Tribology International , 2015, vol. 82, pp. 534–542. DOI: 10.1016/j.triboint.2013.10.022. 16. Vick B., Furey M.J. A basic theoretical study of the temperature rise in sliding contact with multiple contacts. Tribology International , 2001, vol. 34, pp. 823–829. DOI: 10.1016/ S0301-679X(01)00082-2. 17. Seif M.A., Abdel-Aal H.A. Temperature fields in sliding contact by a hybrid laser speckle-strain analysis technique. Wear , 1995, vol. 181–183, pp. 723–729. DOI: 10.1016/0043-1648(95)90189-2. 18. Bansal D.G., Jeff L., Streator G.W. A method for obtaining the temperature distribution at the interface of sliding bodies. Wear, 2009, vol. 266, pp. 721–732. DOI: 10.1016/j.wear.2008.08.019. 19. Bhushan B., ed. Modern tribology handbook. Ed. by. Boca Raton, FL, CRC Press, 2001. 1760 p. ISBN 0-8493-8403-6. 20. Laux K.A., Jean-Fulcrand A., Sue H.J., Bremner T., Wong J.S.S. The influence of surface properties on sliding contact temperature and friction for polyetheretherketone (PEEK). Polymer , 2016, vol. 103, pp. 397–404. DOI: 10.1016/j.polimer.2016.09.064. 21. Guha D., Chowdhuri S.K.R. The effect of surface roughness on the temperature at the contact between sliding bodies. Wear , 1996, vol. 197, pp. 63–73. DOI: 10.1016/0043-1648(95)06833-3. Conflicts of Interest The authors declare no conflict of interest. 2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1