Aleutdinova M.I. et. al. 2019 Vol. 21 No. 2

OBRABOTKAMETALLOV Vol. 21 No. 2 2019 144 MATERIAL SCIENCE References 1. El-Hofya M.H., Soo S.L., Aspinwall D.K., Sim W.M., Pearson D., M’Saoubi R., Harden P. Tool temperature in slotting of CFRPcomposites. ProcediaManufacturing , 2017, vol. 10, pp. 371–381. DOI: 10.1016/j.promfg.2017.07.007. 2. Kuznetsov V.P., Tarasov S.Yu., Dmitriev A.I. Nanostructuring burnishing and subsurface shear instability. Journal of Materials Processing Technology , 2015, vol. 217, pp. 327–335. DOI: 10.1016/j.jmatprotec.2014.11.023. 3. Jerez-Mesa R., Landon Y., Travieso-Rodriguez J.A., Dessein G., Lluma-Fuente J., Wagner V. Topological surface integrity modification of AISI 1038 alloy after vibration-assisted ball burnishing. Surface & Coatings Technology , 2018, vol. 349, pp. 364–377. DOI: 10.1016/j.surfcoat.2018.05.061. 4. Möhring H.-Chr., Kushner V., Storchak M., Stehle T. Temperature calculation in cutting zones . CIRP Annals – Manufacturing Technology , 2018, vol. 67, pp. 61–64. DOI: 10.1016/j.cirp.2018.03.009. 5. Zhou Y., Zhu H., Zuo X., Yang Ji. Chaotic characteristics of measured temperatures during sliding friction. Wear , 2014, vol. 317, pp. 17–25. DOI: 10.1016/j.wear.2014.04.025. 6. Ü st ü nyagiz E., Nielsen C.V., Christiansen P., Martins P.A.F., Altan T., Bay N. A combined numerical and experimental approach for determining the contact temperature in an industrial ironing operation. Journal of Materials Processing Technology , 2019, vol. 264, pp. 249–258. DOI: 10.1016/j. jmatprotec.2018.09.015. 7. Li Ji., Tao Bo, Huang S., Yin Zh. Built-in thin film thermocouples in surface textures of cemented carbide tools for cutting temperature measurement. Sensors and Actuators A. , 2018, vol. 279, pp. 663 – 670. DOI: 10.1016/j. sna.2018.07.017. 8. Saez-de-Buruaga M., Soler D., Aristimu ñ o P.X., Esnaola J.A., Arrazola P.J. Determining tool/chip temperatures from thermography measurements in metal cutting. Applied Thermal Engineering , 2018, vol. 145, pp. 305 – 314. DOI: 10.1016/j.applthermaleng.2018.09.051. 9. Abukhshi N.A., Mativenga P.T., Sheik M.A. Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. International Journal of Machine Tools & Manufacture , 2006, vol. 46, pp. 782 – 800. DOI: 10.1016/j.ijmachtools.2005.07.024. 10. Aleutdinova M.I., Fadin V.V., Rubtsov V.E. Dry slipping steel–steel contact at high current density. Steel in Translation , 2017, vol. 47 (1), pp. 17–20. DOI: 10.3103/S0967091217010028. 11. Vavilov V.P. Infrakrasnaya termografiya i teplovoi kontrol’ [Infrared termografiya and thermal control]. Moscow, Spektr Publ., 2009. 544 p. ISBN 978-5-904270-05-06. 12. Fadin V.V., Aleutdinova M.I., Kolubaev A.V. Effect of high-density electric current on wear and average temperature of steel/steel triboelectric contact. Journal of Friction and Wear , 2018, vol. 39, iss. 4, pp. 294–298. DOI: 10.3103/S1068366618040050. 13. Kreith F., Black W.Z. Basic heat transfer . New York, Harper and Row, 1980. 512 p. ISBN 9780700225187. 14. Galashev A.N., Khviyuzov M.A. Koeffitsient teplovogo izlucheniya instrumental’nykh stalei [Coefficient of thermal radiation tool steels]. NovaInfo.Ru. , 2016, vol. 3, no. 53, pp. 34–35. (In Russian). 15. Kennedy F.E., Lu Yu., Baker I. Contact temperatures and their influence on wear during pin-on-disk tribotesting. Tribology International , 2015, vol. 82, pp. 534–542. DOI: 10.1016/j.triboint.2013.10.022. 16. Vick B., Furey M.J. A basic theoretical study of the temperature rise in sliding contact with multiple contacts. Tribology International , 2001, vol. 34, pp. 823–829. DOI: 10.1016/ S0301-679X(01)00082-2. 17. Seif M.A., Abdel-Aal H.A. Temperature fields in sliding contact by a hybrid laser speckle-strain analysis technique. Wear , 1995, vol. 181–183, pp. 723–729. DOI: 10.1016/0043-1648(95)90189-2. 18. Bansal D.G., Jeff L., Streator G.W. A method for obtaining the temperature distribution at the interface of sliding bodies. Wear, 2009, vol. 266, pp. 721–732. DOI: 10.1016/j.wear.2008.08.019. 19. Bhushan B., ed. Modern tribology handbook. Ed. by. Boca Raton, FL, CRC Press, 2001. 1760 p. ISBN 0-8493-8403-6. 20. Laux K.A., Jean-Fulcrand A., Sue H.J., Bremner T., Wong J.S.S. The influence of surface properties on sliding contact temperature and friction for polyetheretherketone (PEEK). Polymer , 2016, vol. 103, pp. 397–404. DOI: 10.1016/j.polimer.2016.09.064. 21. Guha D., Chowdhuri S.K.R. The effect of surface roughness on the temperature at the contact between sliding bodies. Wear , 1996, vol. 197, pp. 63–73. DOI: 10.1016/0043-1648(95)06833-3. Conflicts of Interest The authors declare no conflict of interest.  2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1