Eremeykin P.A. et. al. 2019 Vol. 21 No. 3

OBRABOTKAMETALLOV Vol. 21 No. 3 2019 27 TECHNOLOGY 5. Shrikrishna N.J., Gururaj B. Three-dimensional finite element based numerical simulation of machining of thin-wall components with varying wall constraints. Journal of the Institution of Engineers (India): Series C , 2017, vol. 98, no. 3, pp. 343–352. DOI: 10.1007/s40032-016-0246-9. 6. Izamshah R., Ding S., Mo J.P.T. Finite element analysis of machining thin-wall parts. Key Engineering Materials , 2010, vol. 458, pp. 283–288. DOI: 10.4028/www.scientific.net/KEM.458.283. 7. Loehea J., Zaeha M.F., Roescha O. In-process deformation measurement of thin-walled workpieces. 5th CIRP Conference on High Performance Cutting 2012 , 2012, vol. 1, pp. 546–551. DOI: 10.1016/j.procir.2012.04.097. 8. Isaev A., Grechishnikov V., Pivkin P., Kozochkin M., Ilyuhin Y., Vorotnikov A. Machining of thin-walled parts produced by additive manufacturing technologies. Procedia CIRP , 2016, vol. 41, pp. 1023–1026. DOI: 10.1016/j. procir.2015.08.088. 9. Scippa A., Grossi N., Campatelli G. FEM based cutting velocity selection for thin walled part machining. 6th CIRP International Conference on High Performance Cutting, HPC 2014 , 2014, vol. 14, pp. 287–292. DOI: 10.1016/j. procir.2014.03.023. 10. Zelinski P. 10 tips for titanium. Modern Machine Shop . 2013. Available at: https://www.mmsonline.com/ articles/10-tips-for-titanium (accessed 12.08.2019). 11. Grabowski R., Denkena B., Köhler J. Prediction of process forces and stability of end mills with complex geometries. Procedia CIRP , 2014, vol. 14, pp. 119–124. DOI: 10.1016/j.procir.2014.03.101. 12. Jixiong F., Bin L., Juliang X., Mei D., Shuai Y., Xiaofeng Z., Jin Z. Investigation of moving fixture on deformation suppression during milling process of thin-walled structures. Journal of Manufacturing Processes , 2018, vol. 32, pp. 403–411. DOI: 10.1016/j.jmapro.2018.03.011. 13. ZhargalovaA.D.,GavryushinS.C., LazarenkoG.P., SemisalovV.I.Metodopredeleniya usloviimekhanicheskoi obrabotki tonkostennykh detalei [Method for determining the processing conditions of thin-walled parts]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of Higher Educational Institutions. Маchine Building , 2015, no. 1, pp. 53–60. DOI: 10.18698/0536-1044-2015-11-53-61. 14. Eremeykin P., Zhargalova A., Gavriushin S. A software system for thin-walled parts deformation analysis. AIMEE 2017: Advances in Artificial Systems for Medicine and Education . Cham, Springer, 2017, pp. 259–265. DOI: 10.1007/978-3-319-67349-3_24. 15. Eremeykin P., Zhargalova A., Gavriushin S. Experimental substantiation of soft cutting modes method. AIMEE 2018: Advances in Artificial Systems for Medicine and Education II. Cham, Springer, 2019, pp. 539–547. DOI: 10.1007/978-3-030-12082-5_49. 16. Bilstein R.E. Stages to Saturn: a technological history of the Apollo/Saturn launch vehicle . Washington, DC, NASA History Office, 1996. 511 p. 17. Johnson G.R., Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541–547. 18. Murugesan M., Dong W.J. Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials , 2019, vol. 609, no. 12, p. 02. 19. SohailA., Mushtaq K., Syed J.H.I., Muhammad F. Numerical and experimental investigation of Johnson–Cook material models for aluminum (Al 6061-T6) alloy using orthogonal machining approach. Advances in Mechanical Engineering , 2018, vol. 10, no. 9, pp. 1–14. DOI: 10.1177/1687814018797794. 20. Campatelli G., Scippa A. Prediction of milling cutting force coefficients for aluminum 6082-T4. 5th CIRP Conference on High Performance Cutting 2012 , 2012, vol. 1, pp. 563–568. DOI: 10.1016/j.procir.2012.04.100. Conflicts of Interest The authors declare no conflict of interest. © 2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1