Mitrofanov A.P., Nosenko V.A. 2019 Vol. 21 No. 4

OBRABOTKAMETALLOV Vol. 21 No. 4 2019 15 TECHNOLOGY 8. Sharma A.K., Tiwari A.K., Dixit A.R. Mechanism of nanoparticles functioning and effects in machining processes: a review // Materials Today: Proceedings. – 2015. –Vol. 2, iss. 4–5. – P. 3539–3544. – DOI: 10.1016/j. matpr.2015.07.331. 9. Nanofluids as potential solution for minimum quantity lubrication: a review / R.R. Srikant, M.M.S. Prasad, M. Amrita, A.V. Sitaramaraju, P.V. Krishna // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2014. – Vol. 228, iss. 1. – P. 3–20. – DOI: 10.1177/0954405413497939. 10. Vasu V., Pradeep Kumar Reddy G. Effect of minimum quantity lubrication with Al 2 O 3 nanoparticleson surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy // Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems. – 2011. – Vol. 225, iss. 1. – P. 3–16. – DOI: 10.1177/1740349911427520. 11. Крутикова А.А., Митрофанов А.П., Парше- ва К.А. Применение технологии подачи минималь- ного количества смазки в охлажденном воздушном потоке при шлифовании жаропрочного сплава // Технология металлов. – 2019. – № 8. – С. 9–15. – DOI: 10.31044/1684-2499-2019-8-0-9-15. 12. Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding / J. Zhang, C. Li, Y. Zhang, M. Yang, D. Jia, Y. Hou, R. Li // The International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 97. – P. 209–228. – DOI: 10.1007/s00170-018-1936-7. 13. Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil / Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang // Journal of Cleaner Production. – 2015. – Vol. 87. – P. 930–940. – DOI: 10.1016/j.jclepro.2014.10.027 . 14 . An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL) / P.H. Lee, J.S. Nam, C. Li, S.W. Lee // International Journal of Precision Engineering and Manufacturing. – 2012. – Vol. 13, iss. 3. – P. 331–338. – DOI: 10.1007/ s12541-012-0042-2. 15. Environment-friendly technological advance- ments to enhance the sustainability in surface grinding – a review / D. Manu, S.S. Vishal, S.D. Jasminder, S.G. Simranpreet // Journal of Cleaner Production. – 2018. – Vol. 197. – P. 218–231. – DOI: 10.1016/j. jclepro.2018.05.280. 16. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding / D. Zhang, C. Li, D. Jia, Y. Zhang, X. Zhang // Chinese Journal of Aeronautics. – 2015. – Vol. 28, iss. 2. – P. 570–581. – DOI: 10.1016/j.cja.2014.12.035. 17. Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures / K.A. Al-hatab, M.A. Al- bukhaiti, U. Krupp, M. Kantehm // Oxidation of Metals. – 2011. – Vol. 75, iss. 3–4. – P. 209–228. – DOI: 10.1007/ s11085-010-9230-6. 18. SEM-EDS and XPS studies of the high tem- perature oxidation behaviour of Inconel 718 / F. De- launay, C. Berthier, M. Lenglet, J.M. Lameille // Mikrochimica Acta. – 2000. – Vol. 132, iss. 2–4. – P. 337–343. – DOI: 10.1007/s006040050027. 19. Li W. Influences of tensile strain and strain rate on the electron work function of metals and alloys // Scripta Materialia. – 2006. – Vol. 54, iss. 5. – P. 921– 924. – DOI: 10.1016/j.scriptamat.2005.10.064. 20. Hua G., Li D. Generic relation between the electron work function and Young’s modulus of metals // Applied Physics Letters. – 2011. – Vol. 99, iss. 4. – P. 041907. – DOI: 10.1063/1.3614475. 21. Lu H. Electron work function – a promising guiding parameter for material design / H. Lu, Z. Liu, X. Yan, D. Li, L. Parent, H. Tian // Scientific Reports. – 2016. – Vol. 6. – P. 1–11. – DOI: 10.1038/srep24366. 22. Zhou Y., Lu J.Q., Qin W.G. Change in the elec- tronic work function under different loading conditions // Materials Chemistry and Physics. – 2009. – Vol. 118. – P. 12–14. – DOI: 10.1016/j.matchemphys.2009.07.062. 23. Shiyi L., Hao L., Li D.Y. The relationship be- tween the electron work function and friction behavior of passive alloys under different conditions // Applied Surface Science. – 2015. – Vol. 351. – P. 316–319. – DOI: 10.1016/j.apsusc.2015.05.125. 24. Wang J., Wang S.Q. Surface energy and work function of fcc and bcc crystals: density functional study // Surface Science. – 2014. – Vol. 630. – P. 216– 224. – DOI: 10.1016/j.susc.2014.08.017. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов.  2019 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии CreativeCommons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0/)

RkJQdWJsaXNoZXIy MTk0ODM1