Mitrofanov A.P., Nosenko V.A. 2019 Vol. 21 No. 4

OBRABOTKAMETALLOV Vol. 21 No. 4 2019 17 TECHNOLOGY 2. Reddy P.P., Ghosh A. Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet. Journal of Materials Processing Technology , 2016, vol. 229, pp. 329–337. DOI: 10.1016/j. jmatprotec.2015.09.040. 3. Nguyen T. An assessment of the applicability of cold air and oil mist in surface grinding. Journal of Materials Processing Technology , 2003, vol. 140, pp. 224–230. DOI: 10.1016/S0924-0136(03)00714-3. 4. Choi H.Z., Lee S.W., Jeong H.D. The cooling effects of compressed cold air in cylindrical grinding with alumina and CBN wheels. Journal of Materials Processing Technology , 2002, vol. 127, pp. 155–158. DOI: 10.1016/ S0924-0136(02)00117-6. 5. SaberiA., RahimiA.R., Parsa H.,AshrafijouM., Rabiei F. Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube. Journal of Cleaner Production , 2016, vol. 131, pp. 728–738. DOI: 10.1016/j.jclepro.2016.04.104. 6. Lee P.A. Study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing , 2015, vol. 16, no. 9, pp. 1899–1909. DOI: 10.1007/s12541-015-0247-2. 7. Shen B. Application of nanofluids in minimum quantity lubrication grinding. Tribology Transactions , 2008, vol. 51, pp. 730–737. DOI: 10.1080/10402000802071277. 8. Sharma A.K., Tiwari A.K., Dixit A.R. Mechanism of nanoparticles functioning and effects in machining processes: a review. Materials Today: Proceedings , 2015, vol. 2, iss. 4–5, pp. 3539–3544. DOI: 10.1016/j.mat- pr.2015.07.331. 9. Srikant R.R., Prasad M.M.S., Amrita M., Sitaramaraju A.V., Krishna P.V. Nanofluids as potential solution for minimum quantity lubrication: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture , 2014, vol. 228, iss. 1, pp. 3–20. DOI: 10.1177/0954405413497939. 10. Vasu V., Pradeep Kumar Reddy G. Effect of minimum quantity lubrication with Al2O3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems , 2011, vol. 225, iss. 1, pp. 3–16. DOI: 10.1177/1740349911427520. 11. Krutikova A.A., Mitrofanov A.P., Parsheva K.A. Primenenie tekhnologii podachi minimal’nogo kolichestva smazki v okhlazhdennom vozdushnom potoke pri shlifovanii zharoprochnogo splava [Application of technology for supply of minimum lubricant amount in cooled air flow during heat-resistant alloy grinding]. Tekhnologiya metallov = Technology of Metals , 2019, no. 8, pp. 9–15. DOI: 10.31044/1684-2499-2019-8-0-9-15. 12. Zhang J., Li C., Zhang Y., Yang M., Jia D., Hou Y., Li R. Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding. The International Journal of Advanced Manufacturing Technology , 2018, vol. 97, pp. 209–228. DOI: 10.1007/s00170-018-1936-7. 13. Zhang Y., Li C., Jia D., Zhang D., Zhang X. Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. Journal of Cleaner Production , 2015, vol. 87, pp. 930–940. DOI: 10.1016/j.jclepro.2014.10.027. 14. Lee P.H., Nam J.S., Li C., Lee S.W.An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing , 2012, vol. 13, iss. 3, pp. 331–338. DOI: 10.1007/s12541-012-0042-2. 15. Manu D., Vishal S. S., Jasminder S.D., Simranpreet S. G. Environment-Friendly Technological Advancements to Enhance the Sustainability in Surface Grinding- A Review. Journal of Cleaner Production , 2018, vol. 197, pp. 218–231. DOI: 0.1016/j.jclepro.2018.05.280. 16. Zhang D., Li C., Jia D., Zhang Y., Zhang X. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chinese Journal of Aeronautics , 2015, vol. 28, iss. 2, pp. 570–581. DOI: 10.1016/j.cja.2014.12.035. 17. Al-hatab K.A., Al-bukhaiti M.A., Krupp U., Kantehm M. Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures. Oxidation of Metals , 2011, vol. 75, iss. 3–4, pp. 209–228. DOI: 10.1007/s11085-010-9230-6. 18. Delaunay F., Berthier C., Lenglet M., Lameille J.M. SEM-EDS and XPS studies of the high temperature oxidation behaviour of Inconel 718. Mikrochimica Acta , 2000, vol. 132, iss. 2–4, pp. 337–343. DOI: 10.1007/ s006040050027. 19. Li W. Influences of tensile strain and strain rate on the electron work function of metals and alloys. Scripta Materialia , 2006, vol. 54, iss. 5, pp. 921–924. DOI: 10.1016/j.scriptamat.2005.10.064. 20. Hua G., Li D. Generic relation between the electron work function and Young’s modulus of metals. Applied Physics Letters , 2011, vol. 99, iss. 4, p. 041907. DOI: 10.1063/1.3614475.

RkJQdWJsaXNoZXIy MTk0ODM1