Shlykov E.S., Ablyaz T.R. 2020 Vol. 22 No. 1
OBRABOTKAMETALLOV Vol. 22 No. 1 2020 26 TECHNOLOGY 4. Gritsyuk V.G. Rezhimy i tekhnologiya obrabotki bimetallov s nalozheniem elektricheskogo polya. Diss. kand. tekhn. nauk [Modes and processing technology of bimetals with the application of an electric fi eld. PhD eng. sci. diss.]. Voronezh, 2005. 201 p. 5. Neulybin S.D., Shitsyn Yu.D., Kuchev P.S., Gilev I.A. Plazmennaya naplavka medi na stal’ na toke obratnoi polyarnosti [Plasma surfacing of copper on steel at opposite polarity current]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Proceedings of the Samara Scienti fi c Center of the Russian Academy of Sciences , 2014, vol. 16, no. 1–2, pp. 468–471. 6. Ablyaz T.R., Khanov A.M., Khurmatullin O.G. Sovremennye podkhody k tekhnologii elektroerozionnoi obrabotki materialov [Modern approaches to the technology of electric discharge machining of materials]. Perm’, 2012. 112 p. 7. PogoninA.A., BoikoA.F., Blinova T.A. Dispersnyi analiz produktov elektroerozionnoi pretsizionnoi obrabotki [The disperse analysis of products of electroerosive precision processing]. Tekhnologiya Mashinostroeniya = Engineering Technology , 2010, no. 6, pp. 26–28. 8. SlyusarevM.V. Issledovanie parametrov kachestva bimetallicheskikh listov [The study of the quality parameters of bimetallic sheets]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 9, Issledovaniya molodykh uchenykh = Science Journal of Volgograd State University. Young Scientists’ Research , 2007, no. 6, pp. 176–182. 9. Lee H.T., Tai T.Y. Relationship between EDM parameters and surface crack formation. Journal of Materials Processing Technology , 2003, vol. 142, iss. 3, pp. 676–683. DOI: 10.1016/S0924-0136(03)00688-5. 10. Das S., Klotz M., Klocke F. EDM simulation: fi nite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology , 2003, vol. 142, iss. 2, pp. 434–451. DOI: 10.1016/ S0924-0136(03)00624-1. 11. Zhurin A.V. Metody rascheta tekhnologicheskikh parametrov i elektrodov-instrumentov pri elektroerozionnoi obrabotke . Diss. kand. tekhn. nauk [Methods for calculating process parameters and tool electrodes in EDM. PhD eng. sci. diss.]. Tula, 2005. 132 p. 12. Tang J., Yang X. A thermo-hydraulic modeling for the formation process of the discharge crater in EDM. Procedia CIRP , 2016, vol. 42, pp. 685–690. DOI: 10.1016/j.procir.2016.02.302. 13. Tsai H.C., Yan B.H., Huang F.Y. EDM performance of Cr/Cu-based composite electrodes. International Journal of Machine Tools and Manufacture , 2003, vol. 43, iss. 3, pp. 245–252. DOI: 10.1016/S0890-6955(02)00238-9. 14. Hayakawa S., Sasaki Y., Itoigawa F., Nakamura T. Relationship between occurrence of material removal and bubble expansion in electrical discharge machining. Procedia CIRP , 2013, vol. 6, pp. 174–179. DOI: 10.1016/j. procir.2013.03.095. 15. Shlykov E.S., Sirotenko L.D. Osobennosti obrabotki bimetallicheskikh materialov elektrodami s raznymi fi ziko-mekhanicheskimi svoistvami [Special aspects of bimetal processing with electrode with physical and mechanical properties]. Zhurnal magistrov = Masters Journal , 2016, no. 1, pp. 199–203. 16. Ploshkin V.V. Strukturnye i fazovye prevrashcheniya v poverkhnostnykh sloyakh stalei pri elektroerozionnoi obrabotke. Diss. kand. tekhn.nauk [Structural and phase transformations in the surface layers of steels during electrical discharge machining. PhD eng. sci. diss.]. Moscow, 2006. 281 p. 17. Tao J., Ni J., Shih A.J. Modeling of the anode crater formation in electrical discharge machining. Journal of Manufacturing Science and Engineering , 2012, vol. 134 (1), p. 011002. DOI: 10.1115/1.4005303. 18. Dey S., Roy D.C. Experimental study using different tools/electrodes E.G. copper, graphite on M.R.R of E.D.M process and selecting the best one for maximum M.R.R in optimum condition. International Journal of Modern Engineering Research , 2013, vol. 3, iss. 3, pp. 1263–1267. 19. Weingärtner E., Kuster F., Wegener K. Modeling and simulation of electrical discharge machining. Procedia CIRP , 2012, vol. 2, pp. 74–78. DOI: 10.1016/j.procir.2012.05.043. 20. Janmanee P., Muttamara A. Performance of difference electrode materials in electrical discharge machining of tungsten carbide. Energy Research Journal , 2010, vol. 1, iss. 2, p р . 87–90. DOI: 10.3844/erjsp.2010.87.90. 21. Abbas N.M., SolomonD.G., BahariMd. F.Areviewon current research trends in electrical dischargemachining (EDM). International Journal of Machine Tools & Manufacture , 2007, vol. 47, pp. 1214–1228. DOI: 10.1016/j. ijmachtools.2006.08.026. 22. Yeo S.H., Kurnia W., Tan P.C. Electro-thermal modelling of anode and cathode in micro-EDM. Journal of Physics D: Applied Physics , 2007, vol. 40 (8), pp. 2513–2521. DOI: 10.1088/0022-3727/40/8/015. Con fl icts of Interest The authors declare no con fl ict of interest. 2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1