Alfyorova E.A., Filippov A.V. 2020 Vol. 22 No. 1
OBRABOTKAMETALLOV Vol. 22 No. 1 2020 100 MATERIAL SCIENCE References 1. Ho H.S., Risbet M., Feaugasb X., Moulin G. The effect of grain size on the localization of plastic deformation in shear bands. Scripta Materialia , 2011, vol. 65, iss. 11, pp. 998–1001. DOI: 10.1016/j.scriptamat.2011.09.001. 2. Raabe D., Sachtleber M., Weiland H., Scheele G. Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Materialia , 2003, vol. 51, pp. 1539–1560. DOI: 10.1016/S1359-6454(02)00557-8. 3. Man J., Klapetek P., Man O., Weidner A., Obrtl ı ´k K., Pola´k J. Extrusions and intrusions in fatigued metals. Pt. 2.AFMand EBSD study of the early growth of extrusions and intrusions in 316Lsteel fatigued at room temperature. Philosophical Magazine , 2009, vol. 89, iss. 16, pp. 1337–1372. DOI: 10.1080/14786430902917624. 4. Man J., Valtr M., Petrenec M., Dluhoš J., Kube ˇ na I., Obrtlík K., Polák J. AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation. International Journal of Fatigue , 2015, vol. 76, pp. 11–18. DOI: 10.1016/j.ijfatigue.2014.09.019. 5. Meng B., Fu M.W. Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Materials and Design , 2015, vol. 83, pp. 400–412. DOI: 10.1016/j. matdes.2015.06.067. 6. Sangid M.D., Maier H.J., Sehitoglu H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals. Acta Materialia , 2011, vol. 59, iss. 1, pp. 328–341. DOI: 10.1016/j. actamat.2010.09.036. 7. Charrier D.S.H., Bonneville J., Coupeau C., Nahas Y. Atypical “boomerang” slip traces in [001] niobium single crystals deformed at room temperature. Scripta Materialia , 2012, vol. 66, iss. 7, pp. 475–478. DOI: 10.1016/j. scriptamat.2011.12.019. 8. Kahloun C., Monnet G., Queyreau S., Le L.T., Franciosi P. A comparison of collective dislocation motion from single slip quantitative topographic analysis during in-situ AFM room temperature tensile tests on Cu and Fe α crystals. International Journal of Plasticity , 2016, vol. 84, pp. 277–298. DOI: 10.1016/j.ijplas.2016.06.002. 9. Kahloun C., Le L.T., Monnet G., Chavanne M.-H., Ait E., Franciosi P. Topological analysis of {110} slip in an alpha-iron crystal from in situ atomic force microscopy. Acta Materialia , 2013, vol. 61, iss. 17, pp. 6459–6465. DOI: 10.1016/j.actamat.2013.07.023. 10. Kramer D.E., Savage M.F., Levine L.E. AFM observations of slip band development in Al single crystals. Acta Materialia , 2005, vol. 53, iss. 17, pp. 4655–4664. DOI: 10.1016/j.actamat.2005.06.019. 11. Chan K.S., Tian J.W., Yang B., Liaw P.K. The Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200. Metallurgical and Materials Transactions: A , 2009, vol. 40, iss. 11, pp. 2545–2556. DOI: 10.1007/s11661-009-9980-4. 12. Stoudt M.R., Levine L.E., Creuzigera A., Hubbard J.B. The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloy. Materials Science and Engineering: A , 2011, vol. 530, iss. 1, pp. 107–116. DOI: 10.1016/j.msea.2011.09.050. 13. Balusu K., Kelton R., Meletis E.I., Huang H. Investigating the relationship between grain orientation and surface height changes in nickel polycrystals under tensile plastic deformation. Mechanics of Materials , 2019, vol. 134, pp. 165–175. DOI: 10.1016/j.mechmat.2019.04.011. 14. Zhang Z.J., Duan Q.Q., An X.H., Wu S.D., Yang G., Zhang Z.F. Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel angular pressing. Materials Science and Engineering: A , 2011, vol. 528, pp. 4259–4267. DOI: 10.1016/j.msea.2010.12.080. 15. Zhang Z.J., An X.H., Zhang P., Yang M.X., Yang G., Wu S.D., Zhang Z.F. Effects of dislocation slip mode on high-cycle fatigue behaviors of ultra fi ne-grained Cu-Zn alloy processed by equal-channel angular pressing. Scripta Materialia , 2013, vol. 68, pp. 389–392. DOI: 10.1016/j.scriptamat.2012.10.036. 16. Mousavi S.E., Meratian M., Rezaeian A. Investigation of mechanical properties and fracture surfaces of dual- phase 60–40 brass alloy processed by warm equal-channel angular pressing. Journal of Materials Science , 2017, vol. 52, pp. 8041–8051. DOI: 10.1007/s10853-017-1006-9. 17. Krasnoveikin V.A.. Kozulin A., Skripnyak V.A., Moskvichev E.N., Lychagin D.V. Characteristic features of physical and mechanical properties of ultra fi ne-grained Al–Mg alloy 1560. Inorganic Materials: Applied Research , 2018, vol. 9, iss. 9, pp. 389–392. DOI: 10.1134/S2075113318020168. 18. Kato H., TodakaY., UmemotoM., Haga M., Sentoku E. Sliding wear behavior of submicrocrystalline pure iron produced by high-pressure torsion straining. Wear , 2015, vol. 336–337, pp. 58–68. DOI: 10.1016/j.wear.2015.04.014. 19. Zhilyaev A.P., Shakhova I., Belyakov A., Kaibyshev R., Langdon T.G. Wear resistance and electroconductivity in copper processed by severe plastic deformation. Wear , 2013, vol. 305, pp. 89–99. DOI: 10.1016/j.wear.2013.06.001.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1