Gusarova A.V. 2020 Vol. 22 No. 1

OBRABOTKAMETALLOV Vol. 22 No. 1 2020 134 MATERIAL SCIENCE 19. Singh S.K., Immanuel R.J., Babu S., Panigrahi S.K., Janaki G.D. Ram In fl uence of multi-pass friction stir processing on wear behaviour and machinability of anAl-Si hypoeutecticA356 alloy. Journal of Materials Processing Technology , 2016, vol. 236, pp. 252–262. DOI: 10.1016/j.jmatprotec.2016.05.019. 20. Kurtyka P., Rylko N., Tokarski T., Wójcicka A., Pietras A. Cast aluminium matrix composites modi fi ed with using FSP process – Changing of the structure and mechanical properties. Composite Structures , 2015, vol. 133, pp. 959–967. DOI: 10.1016/j.compstruct.2015.07.122. 21. Malopheyev S., Mironov S., Kulitskiy V., Kaibyshev R. Friction-stir welding of ultra- fi ne grained sheets of Al–Mg–Sc–Zr alloy. Materials Science and Engineering: A , 2015, vol. 624, pp. 132–139. DOI: 10.1016/j. msea.2014.11.079. 22. Malopheyev S., Mironov S., Vysotskiy I., Kaibyshev R. Superplasticity of friction-stir welded Al–Mg–Sc sheets with ultra fi ne-grained microstructure. Materials Science and Engineering: A, 2016, vol. 649, pp. 85–92. DOI: 10.1016/j.msea.2015.09.106. 23. Malopheyev S., Kulitskiy V., Mironov S., Zhemchuzhnikova D., Kaibyshev R. Friction-stir welding of an Al–Mg–Sc–Zr alloy in as-fabricated and work-hardened conditions. Materials Science and Engineering: A , 2014, vol. 600, pp. 159–170. DOI: 10.1016/j.msea.2014.02.018. 24. Morisada Y., Fujii H., Nagaoka T., Nogi K., Fukusumi M. Fullerene/A5083 composites fabricated by material fl ow during friction stir processing. Composites Part A: Applied Science and Manufacturing , 2007, vol. 38, pp. 2097– 2101. DOI: 10.1016/j.compositesa.2007.07.004. 25. Lee C.J., Huang J.C. High strain rate superplasticity of Mg based composites fabricated by friction stir processing. Materials Transactions , 2006, vol. 47, pp. 2773–2778. DOI: 10.2320/matertrans.47.2773. 26. Sun K., Shi Q.Y., Sun Y.J., Chen G.Q. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Materials Science and Engineering: A, 2012, vol. 547, pp. 32–37. DOI: 10.1016/j.msea.2012.03.071. 27. Dixit M., Newkirk J.W., Mishra R.S. Properties of friction stir-processed Al 1100–NiTi composite. Scripta Materialia , 2007, vol. 56, pp. 541–544. DOI: 10.1016/j.scriptamat.2006.11.006. 28. Ni D.R., Wang J.J., Zhou Z.N., Ma Z.Y. Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. Journal of Alloys and Compounds , 2014, vol. 586, pp. 368–374. DOI: 10.1016/j. jallcom.2013.10.013. 29. Liu Q., Ke L., Liu F., Huang C., Xing L. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Materials & Design , 2013, vol. 45, pp. 343–348. DOI: 10.1016/j.matdes.2012.08.036. 30. Wang W., Shi Q.-Y., Liu P., Li H.-K., Li T. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. Journal of Materials Processing Technology , 2009, vol. 209, pp. 2099– 2103. DOI: 10.1016/j.jmatprotec.2008.05.001. 31. Du Z., Tan M.J., Guo J.F., Bi G., Wei J. Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP). Materials Science and Engineering: A , 2016, vol. 667, pp. 125–131. DOI: 10.1016/j. msea.2016.04.094. 32. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components – Process, structure and properties. Materials Science and Engineering , 2018, vol. 92, pp. 112–224. DOI: 10.1016/j.pmatsci.2017.10.001. 33. Gorsse S., Hutchinson C., Gouné M., Banerjee R. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Science and Technology of Advanced Materials , 2017, vol. 18, iss. 1, pp. 1–27. DOI: 10.1080/14686996.2017.1361305. 34. Li N., Huang S., Zhang G., Qin R., Liu W., Xiong H., Shi G., Blackburn J. Progress in additive manufacturing on new materials: a review. Journal of Materials Science & Technology , 2019, vol. 35, iss. 2, pp. 242–269. DOI: 10.1016/j.jmst.2018.09.002. 35. Basak A., Das S. Epitaxy and microstructure evolution in metal additive manufacturing. Annual Review of Materials Research , 2016, vol. 46, pp. 125–149. DOI: 10.1146/annurev-matsci-070115-031728. 36. Günther J., Brenne F., Droste M., Wendler M., Volkova O., Biermann H., Niendorf T. Design of novel materials for additive manufacturing – Isotropic microstructure and high defect tolerance. Scienti fi c Reports , 2018, vol. 8, pp. 1–14. DOI: 10.1038/s41598-018-19376-0. 37. Wang Z., Palmer T.A., Beese A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Materialia , 2016, vol. 110, pp. 226–235. DOI: 10.1016/j.actamat.2016.03.019.

RkJQdWJsaXNoZXIy MTk0ODM1