Lezhnin N.V., Makarov A.V.et.al._2020_Vol.22_No.2

OBRABOTKAMETALLOV Vol. 22 No. 2 2020 28 TECHNOLOGY References 1. Tkadletz M., Schalk N., Daniel R., Keckes J., Czettl C., Mitterer C. Advanced characterization methods for wear resistant hard coatings: a review on recent progress. Surface & Coating Technology , 2016, vol. 285, pp. 31–46. DOI: 10.1016/j.surfcoat.2015.11.016. 2. Khomyakov M.N., Pinaev P.A., Statsenko P.A., Miroshnichenko I.B., Grachev G.N. Poluchenie uprochnyayushchikh pokrytii iz amor fi ziruemykh splavov FE-CR-SI-B-C lazerno-plazmennymi metodami [Formation of hardening coatings based on Fe-Cr-Si-B-C alloys with high glass-forming ability by laser-plasma methods]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2018, vol. 20, no. 4, pp. 21–34. DOI: 10.17212/1994-6309-2018-20.4-21-34. (In Russian). 3. Fenili C.P., Souza F.S. de, Marin G., Probst S.M.H., Binder C., Klein A.N. Corrosion resistance of low- carbon steel modi fi ed by plasma nitriding and diamond-like carbon. Diamond and Related Materials , 2017, vol. 80, pp. 153–161. DOI: 10.1016/j.diamond.2017.11.001. 4. Skorynina P.A., Makarov A.V., Men’shakov A.I., Osintseva A.L. Vliyanie nizkotemperaturnoi tsementatsii v plazme elektronnogo puchka na uprochnenie i sherokhovatost’ poverkhnosti metastabil’noi austenitnoi stali [Effect of low-temperature carburization in electron beam plasma on the hardening and surface roughness of the metastable austenitic steel]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2019, vol. 21, no. 2, pp. 97–109. DOI: 10.17212/1994-6309-2019-21.2-97-109. (In Russian). 5. Blumenstein V., Kukareko V. Strukturnye prevrashcheniya v poverkhnostnom sloe pri obrabotke mul’tiradiusnym deformiruyushchim instrumentom [Structural transformations in the surface layer during multira- dius deforming tool processing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2018, vol. 20, no. 2, pp. 75–86. DOI: 10.17212/1994-6309-2018-20.2-75-86. (In Russian). 6. Kikuchi S., Nakamura Y., Nambu K., Ando M. Effect of shot peening using ultra- fi ne particles on fatigue properties of 5056 aluminum alloy under rotating bending. Materials Science and Engineering: A , 2016, vol. 652, pp. 279–286. DOI: 10.1016/j.msea.2015.11.076. 7. Chen M., Jiang C., Xu Z., Zhan K., Ji V. Experimental study on macro- and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening. Surface & Coatings Technology , 2019, vol. 359, pp. 511–519. DOI: 10.1016/j.surfcoat.2018.12.097. 8. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treat- ment. Materials Science and Engineering: A , 2004, vol. 375–377, pp. 38–45. DOI: 10.1016/j.msea.2003.10.261. 9. Yang X., Pan H., Zhang J., Gao H., Shu B., Gong Y., Zhu X. Progress in mechanical properties of gradi- ent structured metallic materials induced by surface mechanical attrition treatment. Materials Transactions , 2019, vol. 60, iss. 8, pp. 1543–1552. DOI: 10.2320/matertrans.MF201911. 10. Zhang Q., Hu Z., Su W., Zhou H., Liu C., Yang Y., Qi X. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology. Surface & Coatings Technology , 2017, vol. 321, pp. 64–73. DOI: 10.1016/j.surfcoat.2017.04.052. 11. Yang X., Wang X., Ling X., Wang D. Enhanced mechanical behaviors of gradient nano-grained austenite stain- less steel by means of ultrasonic impact treatment. Results in Physics , 2017, vol. 7, pp. 1412–1421. DOI: 10.1016/j. rinp.2017.04.002. 12. Panin A.V., Kazachenok M.S., Kozelskaya A.I., Balokhonov R.R., Romanova V.A., Perevalova O.B., Po- chivalov Yu.I. The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension. Materials & Design , 2017, vol. 117, iss. 5, pp. 371–381. DOI: 10.1016/j.matdes.2017.01.006. 13. Makarov A.V., Malygina I.Yu., Burov S.V., Savraj R.A. Sposob ultrazvukovoi uprochniauchei obrabotki de- talei [Method of ultrasonic simple processing of details]. Patent RF, no. 2643289, 2018. 14. MakarovA.V., Savrai R.A., Malygina I.Yu., Volkova E.G., Burov S.V. Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment. AIP Conference Proceedings , 2018, vol. 2053, iss. 1, pp. 020006-1–020006-5. DOI: 10.1063/1.5084352. 15. Lezhnin N.V., Makarov A.V., Luchko S.N. The effect of ultrasonic impact-frictional treatment on the surface roughness and hardening of 09Mn2Si constructional steel. Letters on Materials , 2019, vol. 9, iss. 3, pp. 310–315. DOI: 10.22226/2410-3535-2019-3-310-315. 16. Li L., KimM., Lee S., Bae M., Lee D. In fl uence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel. Surface &Coatings Technology , 2016, vol. 307, pp. 517–524. DOI: 10.1016/j. surfcoat.2016.09.023.

RkJQdWJsaXNoZXIy MTk0ODM1