Lezhnin N.V., Makarov A.V.et.al._2020_Vol.22_No.2
OBRABOTKAMETALLOV Vol. 22 No. 2 2020 29 TECHNOLOGY 17. Chamgordani S.A., Miresmaeili R., Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical attrition treatment (SMAT). Tribology International , 2018, vol. 119, pp. 744–752. DOI: 10.1016/j.triboint.2017.11.044. 18. Mordyuk B.N., Prokopenko G.I., Vasylyev M.A., Ie fi mov M.O. Effect of structure evolution induced by ul- trasonic peening on the corrosion behavior of AISI-321 stainless steel. Material Science and Engineering: A , 2007, vol. 458, pp. 253–261. DOI: 10.1016/j.msea.2006.12.049. 19. Liu Y., Wang D., Deng C., Xia L., Huo L., Wang L., Gong B. In fl uence of re-ultrasonic impact treatment on fatigue behaviors of S690QL welded joints. International Journal of Fatigue , 2014, vol. 66, pp. 155–160. DOI: 10.1016/j.ijfatigue.2014.03.024. 20. Zhoua J., Retrainta D., Suna Z., Kanouté P. Comparative study of the effects of surface mechanical attrition treatment and conventional shot peening on low cycle fatigue of a 316L stainless steel. Surface & Coatings Techno- logy , 2018, vol. 349, pp. 556–566. DOI: 10.1016/j.surfcoat.2018.06.041. 21. Kovalevskaya Zh.G., Uvarkin P.V., Tolmachev A.I. Some features of the formation of the surface microre- lief of steel under ultrasonic fi nishing treatment. Russian Journal of Nondestructive Testing , 2012, vol. 48, iss. 3, pp. 153–158. DOI: 10.1134/S1061830912030047. 22. Li L., Kim M., Lee S., Kim T., Lee J., Lee D. A two-step periodic micro-nano patterning process via ultra- sonic impact treatment on a rough SUS301 stainless steel surface. Surface & Coatings Technology , 2017, vol. 330, pp. 204–210. DOI: 10.1016/j.surfcoat.2017.10.004. 23. Alekhin V.P., Alekhin O.V. Nanotekhnologiya poverkhnostnoi uprochnyayushchei i fi nishnoi obrabotki deta- lei iz konstruktsionnykh i instrumental’nykh stalei [Nanotechnology of surface hardening and fi nishing processing of parts from structural and tool steels]. Mashinostroenie i inzhenernoe obrazovanie = Mechanical engineering and engineering education , 2007, no. 4 (13), pp. 2–13. 24. Panin A.V., Kazachenok M.S., Kozelskaya A.I., Hairullin R.R., Sinyakova E.A. Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment. Materials Science and Engineering: A , 2015, vol. 647, pp. 43–50. DOI: 10.1016/j.msea.2015.08.086. 25. Loginov B.A., Loginov P.B., Loginov V.B., Loginov A.B. Zondovaya mikroskopiya: primeneniya i reko- mendatsii po razrabotke [Probe microscopy: applications and development recommendations]. Nanoindustriya = Nanoindustry , 2019, vol. 12, no. 6 (92), pp. 352–364. 26. Makarov A.V., Korshunov L.G. Metallophysical foundations of nanostructuring frictional treatment of steels. The Physics of Metals and Metallography , 2019, vol. 120, iss. 3, pp. 303–311. DOI: 10.1134/S0031918X18120128. 27. Peters J.O., Boyce B.L., Chen X., McNaney J.M., Hutchinson J.W., Ritchie R.O. On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue. Engineering Fracture Mechanics , 2002, vol. 69, pp. 1425–1446. DOI: 10.1016/S0013-7944(01)00152-7. 28. Mordyuk B.N., Prokopenko G.I. Ultrasonic impact peening for the surface properties’ management. Journal of Sound and Vibration , 2007, vol. 308, pp. 855–866. DOI: 10.1016/j.jsv.2007.03.054. 29. Arifvianto B., Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough sur- face of AISI 316L stainless steel. Applied Surface Science , 2012, vol. 258, pp. 4538–4543. DOI: 10.1016/j. apsusc.2012.01.021. Con fl icts of Interest The authors declare no con fl ict of interest. 2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1