Lezhnin N.V., Makarov A.V.et.al._2020_Vol.22_No.2

OBRABOTKAMETALLOV Vol. 22 No. 2 2020 29 TECHNOLOGY 17. Chamgordani S.A., Miresmaeili R., Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical attrition treatment (SMAT). Tribology International , 2018, vol. 119, pp. 744–752. DOI: 10.1016/j.triboint.2017.11.044. 18. Mordyuk B.N., Prokopenko G.I., Vasylyev M.A., Ie fi mov M.O. Effect of structure evolution induced by ul- trasonic peening on the corrosion behavior of AISI-321 stainless steel. Material Science and Engineering: A , 2007, vol. 458, pp. 253–261. DOI: 10.1016/j.msea.2006.12.049. 19. Liu Y., Wang D., Deng C., Xia L., Huo L., Wang L., Gong B. In fl uence of re-ultrasonic impact treatment on fatigue behaviors of S690QL welded joints. International Journal of Fatigue , 2014, vol. 66, pp. 155–160. DOI: 10.1016/j.ijfatigue.2014.03.024. 20. Zhoua J., Retrainta D., Suna Z., Kanouté P. Comparative study of the effects of surface mechanical attrition treatment and conventional shot peening on low cycle fatigue of a 316L stainless steel. Surface & Coatings Techno- logy , 2018, vol. 349, pp. 556–566. DOI: 10.1016/j.surfcoat.2018.06.041. 21. Kovalevskaya Zh.G., Uvarkin P.V., Tolmachev A.I. Some features of the formation of the surface microre- lief of steel under ultrasonic fi nishing treatment. Russian Journal of Nondestructive Testing , 2012, vol. 48, iss. 3, pp. 153–158. DOI: 10.1134/S1061830912030047. 22. Li L., Kim M., Lee S., Kim T., Lee J., Lee D. A two-step periodic micro-nano patterning process via ultra- sonic impact treatment on a rough SUS301 stainless steel surface. Surface & Coatings Technology , 2017, vol. 330, pp. 204–210. DOI: 10.1016/j.surfcoat.2017.10.004. 23. Alekhin V.P., Alekhin O.V. Nanotekhnologiya poverkhnostnoi uprochnyayushchei i fi nishnoi obrabotki deta- lei iz konstruktsionnykh i instrumental’nykh stalei [Nanotechnology of surface hardening and fi nishing processing of parts from structural and tool steels]. Mashinostroenie i inzhenernoe obrazovanie = Mechanical engineering and engineering education , 2007, no. 4 (13), pp. 2–13. 24. Panin A.V., Kazachenok M.S., Kozelskaya A.I., Hairullin R.R., Sinyakova E.A. Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment. Materials Science and Engineering: A , 2015, vol. 647, pp. 43–50. DOI: 10.1016/j.msea.2015.08.086. 25. Loginov B.A., Loginov P.B., Loginov V.B., Loginov A.B. Zondovaya mikroskopiya: primeneniya i reko- mendatsii po razrabotke [Probe microscopy: applications and development recommendations]. Nanoindustriya = Nanoindustry , 2019, vol. 12, no. 6 (92), pp. 352–364. 26. Makarov A.V., Korshunov L.G. Metallophysical foundations of nanostructuring frictional treatment of steels. The Physics of Metals and Metallography , 2019, vol. 120, iss. 3, pp. 303–311. DOI: 10.1134/S0031918X18120128. 27. Peters J.O., Boyce B.L., Chen X., McNaney J.M., Hutchinson J.W., Ritchie R.O. On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue. Engineering Fracture Mechanics , 2002, vol. 69, pp. 1425–1446. DOI: 10.1016/S0013-7944(01)00152-7. 28. Mordyuk B.N., Prokopenko G.I. Ultrasonic impact peening for the surface properties’ management. Journal of Sound and Vibration , 2007, vol. 308, pp. 855–866. DOI: 10.1016/j.jsv.2007.03.054. 29. Arifvianto B., Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough sur- face of AISI 316L stainless steel. Applied Surface Science , 2012, vol. 258, pp. 4538–4543. DOI: 10.1016/j. apsusc.2012.01.021. Con fl icts of Interest The authors declare no con fl ict of interest.  2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1