Nosenko V.A., Fetisov A.V., Kuznetsov S.P. 2020 Vol. 22 No. 2

OBRABOTKAMETALLOV Vol. 22 No. 2 2020 39 EQUIPMENT. INSTRUMENTS 3. Curtis D., Soo S.L., Aspinwall D.K., Mantle A. Evaluation of workpiece surface integrity following point grinding of advanced titanium and nickel based alloys. Procedia CIRP , 2016, vol. 45, pp. 47–50. DOI: 10.1016/j. procir.2016.02.343. 4. PramanikA., Zhang L.C., Arsecularatne J.A. Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. International Journal of Machine Tools & Manufacture , 2008, vol. 48, pp. 1613–1625. DOI: 10.1016/j.ijmachtools.2008.07.008. 5. Liu J., Li J., Xu C. Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: a review. CIRP Journal of Manufacturing Science and Technology , 2014, vol. 7, iss. 2, pp 55–70. DOI: 10.1016/j.cirpj.2014.01.003. 6. Nosenko S.V., Nosenko V.A., Koryazhkin A.A. The effect of the operating speed and wheel characteristics on the surface quality at creep-feed grinding titanium alloys. Solid State Phenomena , 2018, vol. 284, pp. 369–374. DOI: 10.4028/www.scienti fi c.net/SSP.284.369. 7. Suslov A.G., execut. ed. Spravochnik tekhnologa [Technologist’s reference]. Moscow, Innovative Engineering Publ., 2019. 800 p. 8. Rechenko D.S. Obrabotka titanovykh i zharoprochnykh splavov vysokoskorostnym shlifovaniem [Machine processing of titanium and heat-resistant alloys with high-speed grinding]. Omskii nauchnyi vestnik = Omsk Scien- ti fi c Bulletin, 2008, no. 4 (73), pp. 59–61. (In Russian). 9. Mitrofanov A.P., Nosenko V.A. Issledovanie tekhnologii mikrodozirovannoi podachi smazochnykh kompozit- sii s nanochastitsami pri shlifovanii zharoprochnogo splava s dopolnitel’nym vozdushnym okhlazhdeniem [Research of technology of microdosed supply of lubricant compositions with nanoparticles during grinding of a heat-resistant alloy with additional air cooling]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 4, no. 21, pp. 6–18. DOI: 10.17212/1994-6309-2019-21.4-6-18. (In Russian). 10. Ermolaev V.K. Razvitie tekhniki podachi SOZh pri shlifovanii [Development of coolant delivery techniques for grinding]. RITM mashinostroeniya = Rhythm of Machinery , 2019, no. 7, pp. 12–18. 11. Nosenko S.V., Nosenko V.A., Krutikova A.A., Kremenetskii L.L. Surface-layer composition of titanium al- loy after dry grinding by a silicon-carbide wheel. Russian Engineering Research , 2015, vol. 35, iss. 7, pp. 554–557. DOI: 10.3103/S1068798X15070163. 12. Bokuchava G.V. Tribologiya protsessa shlifovaniya [Tribology of the grinding process]. Tbilisi, Sabchota Sakartvelo Publ., 1984. 238 p. 13. Kremen’ Z.I., Jur’ev V.G. Shlifovanie superabrazivami vysokoplastichnykh splavov [Super abrasive grinding of superplastic alloys]. Saint Petersburg, St. Petersburg Polytechnic University Publ., 2013. 167 p. ISBN 978-5-7422- 1034-1. 14. Makarov V.F., Sakaev A.Kh. Pro fi l’noe glubinnoe shlifovanie lopatok turbin na stanke s ChPU s nepreryvnoi pravkoi kruga [Research of quality of grinding of pro fi le surfaces of blades of the turbine on the turning-front ma- chine tool and at multicoordinate depth grinding]. Vestnik UGATU = Bulletin of USATU , 2012, vol. 16, no. 4 (49), pp. 52–58. 15. Poletaev V.A., Tsvetkov E.V. Kachestvo poverkhnostnogo sloya lopatok kompressorov iz titana pri mnogo- koordinatnom glubinnom shlifovanii [Surface layer quality in compressor titanium blades at multiaxes deep grind- ing]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering , 2017, no. 12, pp. 15–19. 16. Fedorov D.G., Skuratov D.L. Eksperimental’noe issledovanie kachestva poverkhnostnogo sloya i sil reza- niya pri ploskom shlifovanii titanovogo splava VT6 [Experimental research of the surface layer quality and cutting forces in fl at grinding of the BT6 titanium alloy]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo univer- siteta = Vestnik of Samara University: Aerospace and Mechanical Engineering, 2015, vol. 14, no. 3, pp. 400–408. DOI: 10.18287/2412-7329-2015-14-3-400-408. 17. Tao Z., Shi Y., Sampsa L., Zhou J. Investigation of the effect of grinding parameters on surface quality in grinding of TC4 titanium alloy. Procedia Manufacturing , 2017, vol. 11, pp. 2131–2138. DOI: 10.1016/j.prom- fg.2017.07.344. 18. Xi X., Yu T., Ding W., Xu J. Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels: tool surface topology effect on grinding force and ground surface quality. Precision Engineering, 2018, vol. 53, pp. 134–145. DOI: 10.1016/j.precisioneng.2018.03.007. 19. Mello A., Silva R.B. de, Machado A.R., Gelamo R.V., Diniz A.E., Oliveira R.F.M. de. Surface grinding of Ti-6Al-4V alloy with SiC abrasive wheel at various cutting conditions. Procedia Manufacturing, 2017, vol. 10, pp. 590–600. DOI: 10.1016/j.promfg.2017.07.057.

RkJQdWJsaXNoZXIy MTk0ODM1