Sevostyanova I.N., Sablina T.Yu. et. al. 2020 Vol. 22 No. 2

OBRABOTKAMETALLOV Vol. 22 No. 2 2020 87 MATERIAL SCIENCE References 1. Pogoda V.A., Kebko V.P., Loshak M.G., Aleksandrova L.I. Termicheskie napryazheniya v tverdom splave WC-Co posle spekaniya [Thermal stresses in WC-Co carbide after sintering] . Problemy prochnosti = Strength of Materials , 1990, iss. 12, pp. 87–93. 2. Rowcliffe D., Jayaram V., Hibbs M., Sinclair R. Compressive deformation and fracture in WC materials. Materials Science and Engineering: A , 1988, vol. 105/106, pt. 2, pp. 299–303. DOI: 10.1016/0025-5416(88)90710-0. 3. Paggett J.W., Krawitz A.D., Drake E.F., Bourke M.A.M., Livescu V., Claussen B., Brown D.W. In situ loading response of WC–Ni: origins of toughness. Journal of Refractory Metals and Hard Materials, 2006, vol. 24, iss. 1–2, pp. 122–128. DOI: 10.1016/j.ijrmhm.2005.06.005. 4. Livescu V., Clausen B., Paggett J.W., Krawitz A.D., Drake E.F., Bourke M.A.M. Measurement and modeling of room temperature co-deformation in WC–10 wt.% Co. Materials Science and Engineering: A , 2005, vol. 399, iss. 1–2, pp. 134–140. DOI: 10.1016/j.msea.2005.02.024. 5. Tarragó J.M., Roa J.J., Jiménez-Piqué E., Keown E., Fair J., Llanes L. Mechanical deformation of WC–Co composite micropillars under uniaxial compression. International Journal of Refractory Metals and Hard Materials , 2016, vol. 54, pp. 70–74. DOI: 10.1016/j.ijrmhm.2015.07.015. 6. Gao L.X., Zhou T., Zhang D.Q., Lee K.Y. Microstructure and anodic dissolution mechanism of brazed WC–Ni composite coatings. Corrosion Engineering, Science and Technology , 2014, vol. 49, iss. 3, pp. 204–208. DOI: 10.11 79/1743278213y.0000000124. 7. Andrews N., Giourntas L., Galloway A.M., Pearson A. Erosion–corrosion behaviour of zirconia, WC– 6Co, WC–6Ni and UNS S31600. International Journal of Refractory Metals and Hard Materials, 2015, vol. 48, pp. 229–237. DOI: 10.1016/j.ijrmhm.2014.09.001. 8. Chang S.-H., Chang P.-Y. Study on the mechanical properties, microstructure and corrosion behaviors of nano- WC–Co–Ni–Fe hard materials through HIP and hot-press sintering processes. Materials Science and Engineering: A , 2014, vol. 618, pp. 56–62. DOI: 10.1016/j.msea.2014.08.081. 9. Chang S-H., Chen S-L. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys. Journal of Alloys and Compounds , 2014, vol. 585, pp. 407–413. DOI: 10.1016/j.jallcom.2013.09.188. 10. Ra fi aei S.M., Bahrami A., Shokouhimehr M. In fl uence of Ni/Co binders and Mo 2 C on the microstructure evolution and mechanical properties of (Ti0.93W0.07) C–based cermets. Ceramics International , 2018, vol. 44, iss. 15, pp. 17655–17659. DOI: 10.1016/j.ceramint.2018.06.227. 11. Gao Y., Luo B-H., He K-J., Zhang W.-W., Bai Z.-H. Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides. Ceramics International , 2018, vol. 44, iss. 2, pp. 2030–2041. DOI: 10.1016/j. ceramint.2017.10.148. 12. Tarraste M., Kübarsepp J., Juhani K., Mere A., Kolnes M., Viljus M., Maaten B. Ferritic chromium steel as binder metal for WC cemented carbides. International Journal of Refractory Metals & Hard Materials , 2018, vol. 73, pp. 183–191. DOI: 10.1016/j.ijrmhm.2018.02.010. 13. Paul’ A.V., Gnyusov S.F., Ivanov Y.F., Kul’kov S.N., Kozlov E.V. Structural-phase changes in hard alloy WC-steel 110G13 after dynamic loading. Russian Physics Journal , 1994, vol. 37, iss. 8, pp. 757–761. DOI: 10.1007/ bf00559871. 14. Seol J.-B., Jung J.E., Jang Y.W., Park C.G. In fl uence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/e-martensite dual-phase Fe–Mn–C steels. Acta Materialia, 2013, vol. 61, pp. 558–578. DOI: 10.1016/j.actamat.2012.09.078. 15. Volynova T.F. Vysokomargantsovistye stali i splavy [High manganese steels and alloys]. Moscow, Metallurgiya Publ., 1980. 270 p. ISBN 5-229-00069-4. 16. Lysak L.I., Nikolin B.I. Fizicheskie osnovy termicheskoi obrabotki stali [Physical fundamentals of heat treatment of steel]. Kiev, Tekhnika Publ., 1975. 304 p. 17. Bogachev I.N., Egolaev V.F. Struktura i svoistva zhelezomargantsevykh splavov [Structure and properties of ferromanganese alloys]. Moscow, Metallurgiya Publ., 1973. 296 p. 18. Tu ğ luca I.B., Koyama M., Bal B., Canadinc D., Akiyama E., Tsuzaki K. High-concentration carbon assists plasticity-driven hydrogen embrittlement in a Fe-high Mn steel with a relatively high stacking fault energy. Materials Science & Engineering: A , 2018, vol. 717, pp. 78–84. DOI: 10.1016/j.msea.2018.01.087. 19. Yuan X., Chen L., Zhao Y., Di H., Zhu F. In fl uence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel. Journal of Materials Processing Technology, 2015, vol. 217, pp. 278–285. DOI: 10.1016/j.jmatprotec.2014.11.027.

RkJQdWJsaXNoZXIy MTk0ODM1