Khoroshko E.S., Filippov A.V. et. al. 2020 Vol. 22 No. 2
OBRABOTKAMETALLOV Vol. 22 No. 2 2020 125 MATERIAL SCIENCE сказывается на значении предела прочности ( изменение в диапазоне от 245 до 359 МПа ), предела текучести ( изменение в диапазоне от 82 до 112 МПа ), относительного удлинения ( изменение в диапазоне от 75 до 133 %). Анизо - тропия свойств при сжатии образцов сказыва - ется на значении предела текучести ( изменение в диапазоне от 45 до 90 МПа ). Полученные результаты расширяют фунда - ментальные представления о процессах струк - турообразования сплавов в условиях электрон - но - лучевого аддитивного производства и могут быть использованы при разработке технологий печати изделий из медных сплавов . Список литературы 1. Gohar G.A., Manzoor T., Shah A.N. Investigation of thermal and mechanical properties of Cu-Al alloys with silver addition prepared by powder metallurgy // Journal of Alloys and Compounds. – 2018. – Vol. 735. – P. 802–812. – DOI: 10.1016/j.jallcom.2017.11.176. 2. Phase equilibria in the Cu-rich portion of the Cu–Al binary system / X. Liu, I. Ohnuma, R. Kainuma, K. Ishida // Journal of Alloys and Compounds. – 1998. – Vol. 264. – P. 201–208. DOI: 10.1016/S0925- 8388(97)00235-1. 3. Additive manufacturing of metallic components – Process, structure and properties / T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese,A. Wilson-Heid,A. De, W. Zhang // Progress in Materials Science. – 2018. – Vol. 92. – P. 112–224. – DOI: 10.1016/j.pmatsci.2017.10.001. 4. Laser-Additive repair of cast Ni–Al–Bronze components / X. Cao, P. Wanjara, J. Gholipour, Y. Wang // TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. – Cham: Springer, 2018. – P. 205–216. – DOI: 10.1007/978-3-030-05861-6_19. 5. Underwater laser cladding in full wet surroundings for fabrication of nickel aluminum bronze coatings / X. Feng, X. Cui, G. Jin, W. Zheng, Z. Cai, X. Wen, B. Lu, J. Liu // Surface and Coatings Technology. – 2018. – Vol. 333. – P. 104–114. – DOI: 10.1016/j. surfcoat.2017.10.056. 6. Thermal stability and corrosion resistance in a novel nickle aluminum bronze coating by laser cladding / X.P. Tao, S. Zhang, C.L. Wu, C.H. Zhang, J.B. Zhang, Y. Liu // Materials Research Express. – 2018. – Vol. 5, N 11. – P. 116527. – DOI: 10.1088/2053-1591/aade7c. 7. Hyatt C.V., Magee K.H., Betancourt T. The effect of heat input on the microstructure and properties of nickel aluminum bronze laser clad with a consumable of composition Cu-9.0Al-4.6Ni-3.9Fe-1.2Mn // Metallurgical and Materials Transactions A: Physics of Metals and Materials Science. – 1998. – Vol. 29. – P. 1677–1690. DOI: 10.1007/s11661-998-0090-5. 8. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing / X. Feng, X. Cui, W. Zheng, B. Lu, M. Dong, X. Wen, Y. Zhao, G. Jin // Optics and Laser Technology. – 2019. – Vol. 114. – P. 140–145. DOI: 10.1016/j.optlastec.2019.01.034. 9. Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding / X.P. Tao, S. Zhang, C.H. Zhang, C.L. Wu, J. Chen, A.O. Abdullah // Surface and Coatings Technology. – 2018. – Vol. 342. – P. 76–84. DOI: 10.1016/j.surfcoat.2018.02.032. 10. Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process / B. Dong, Z. Pan, C. Shen, Y. Ma, H. Li // Metallurgical andMaterial Transactions B: Process Metallurgy and Materials Processing Science. – 2017. – Vol. 48. – P. 3143–3151. DOI: 10.1007/s11663-017-1071-0. 11. In-situ wire-feed additive manufacturing of Cu-Al alloy by addition of silicon / Y. Wang, X. Chen, S. Konovalov, C. Su, A.N. Siddiquee, N. Gangil // Applied Surface Science. – 2019. – Vol. 487. – P. 1366– 1375. – DOI: 10.1016/j.apsusc.2019.05.068. 12. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe- 4Ni-1Mn fabricated through wire-arc additive manufacturing / C. Dharmendra, A. Hadadzadeh, B.S. Amirkhiz, G.D. Janaki Ram, M. Mohammadi // Ad- ditive Manufacturing. – 2019. – Vol. 30. – P. 100872. – DOI: 10.1016/j.addma.2019.100872. 13. The in fl uence of post-production heat treatment on the multi-directional properties of nickel-aluminum bronze alloy fabricated using wire-arc additive manufacturing process / C. Shen, Z. Pan, D. Ding, L. Yuan, N. Nie, Y. Wang, D. Luo, D. Cuiuri, S. van Duin, H. Li // Additive Manufacturing. – 2018. – Vol. 23. – P. 411–421. – DOI: 10.1016/j.addma. 2018.08.008. 14. The morphology, crystallography, and chemistry of phases in wire-arc additively manufactured nickel aluminum bronze / C. Dharmendra, A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, // TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. – Cham: Springer, 2019. – P. 443–453. – DOI: 10.1007/978-3-030-05861-6_41. 15. Fabricating superior NiAl bronze components through wire arc additive manufacturing / D. Ding, Z. Pan, S. van Duin, H. Li, C. Shen // Materials (Basel). – 2016. – Vol. 9, N 8. – DOI: 10.3390/ma9080652. 16. Wolf T., Fu Z., Körner C. Selective electron beam melting of an aluminum bronze: microstructure and mechanical properties // Materials Letters. – 2019. – Vol. 238. – P. 241–244. – DOI: 10.1016/j.matlet.2018.12.015.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1