Kryuchkov D.I., Nesterenko A.V. 2020 Vol. 22 No. 2

OBRABOTKAMETALLOV Vol. 22 No. 2 2020 149 MATERIAL SCIENCE 63. Pandey A.B., Mishra R.S., Mahajan Y.R. Creep fracture in Al-SiC metal-matrix composites // Journal of Materials Science. – 1993. – Vol. 28, iss. 11. – P. 2943– 2949. – DOI: 10.1007/BF00354697. 64. High temperature creep behaviour of silicon carbide particulate reinforced aluminium / J. Cadek, H. Oikawa, V. Sustek, M. Pahutova // High Temperature Materials and Processes. – 1994. – Vol. 13, iss. 4. – P. 327–338. – DOI: 10.1515/HTMP.1994.13.4.327. 65. Pandey A.B., Mishra R.S., Mahajan Y.R. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite // Metallurgical and Materials Transactions A. – 1996. – Vol. 27. – P. 305– 16. – DOI: 10.1007/BF02648408. 66. Deshmukh S.P., Mishra R.S., Kendig K.L. Creep behavior of extruded Al–6Mg–1Sc–1Zr–10 vol.% SiCp composite // Materials Science and Engineering: A. – 2005. – Vol. 410–411. – P. 53–57. – DOI: 10.1016/j. msea.2005.08.096. 67. Lin Z., Mohamed F.A. Creep andmicrostructure in powder metallurgy 15 vol.% SiCp–2009 Al composite // Journal of Materials Science. – 2012. – Vol. 47, iss. 6. – P. 2975–2984. – DOI: 10.1007/s10853-011-6131-2. 68. Biner S.B. Creep deformation behavior of SiC particulate reinforced aluminum composite // 22nd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings. – 1988. – Vol. 19. – Ch. 53. – DOI: 10.1002/9780470294482.ch53. 69. Creep properties of an Al-2024 composite reinforced with SiC particulates / S. Spigarelli, M. Cabibbo, E. Evangelista, T.G. Langdon // Materials Science and Engineering: A. – 2002. – Vol. 328, iss. 1–2. – P. 39–47. – DOI: 10.1016/S0921-5093(01) 01698-7. 70. Gonzalez-Doncel G., Sherby O.D. High tem- perature creep behavior of metal matrix aluminum–SiC composites // Acta Metallurgica et Materialia. – 1993. – Vol. 41, iss. 10. – P. 2797–2805. – DOI: 10.1016/0956- 7151(93)90094-9. 71. LinZ., Li Y.,MohamedF.A. Creep and substructure in 5 vol.% SiC-2124 Al composite // Materials Science and EngineeringA. – 2002. – Vol. 332, iss. 1–2. – P. 330– 342. – DOI: 10.1016/S0921-5093(01)01760-9. 72. Li Y., Mohamed F.A. An investigation of creep behavior in an SiC–2124 Al composite // Acta Materialia. – 1997. – Vol. 45, iss. 11. – P. 4775–4785. – DOI: 10.1016/S1359-6454(97)00130-4. 73. Analysis of creep behavior of SiC/Al metal matrix composites based on a generalized shear-lag model / H. Ryu, K. Chung, S. Cha, S. Hong // Journal of Materials Research. – 2004. – Vol. 19, iss.12. – P. 3633– 3640. – DOI: 10.1557/JMR.2004.0472. 74. Č adek J., PahutováM., Šustek V. Creep behaviour of a 2124 Al alloy reinforced by 20 vol.% silicon carbide particulates // Materials Science and Engineering: A. – 1998. – Vol. 246, iss. 1–2. – P. 252–264. – DOI: 10.1016/ S0921-5093(97)00694-1. 75. Ma Z.Y., Tjong S.C. The high-temperature creep behaviour of 2124 aluminium alloys with and without particulate and SiC-whisker reinforcement // Composites Science and Technology. – 1999. – Vol. 59, iss. 5. – P. 737–747. – DOI: 10.1016/S0266-3538(98)00113-4. 76. Nardone V.C., Strife J.R. Analysis of the creep behavior of silicon carbide whisker reinforced 2124 Al(T4) // Metallurgical Transactions A. – 1987. – Vol. 18, iss. 1. –P. 109–114. –DOI: 10.1007/BF02646227. 77. Krajewski P.E., Allison J.E., Jones J.W. The effect of SiC particle reinforcement on the creep behavior of 2080 aluminum // Metallurgical and Materials Transactions A. – 1997. – Vol. 28, iss. 3. – P. 611–620. – DOI: 10.1007/s11661-997-0046-1. 78. Zong B.Y., Derby B. Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite // Acta Materialia. – 1997. – Vol. 45, iss. 1. – P. 41–49. – DOI: 10.1016/S1359-6454(96)00171-1. 79. Wakashima K., Moriyama T., Mori T. Steady- state creep of a particulate SiC/6061 Al composite // Acta Materialia. – 2000. – Vol. 48, iss. 4. – P. 891–901. – DOI: 10.1016/S1359-6454(99)00386-9. 80. Fernández R., González-Doncel G. Threshold stress and load partitioning during creep of metal matrix composites // Acta Materialia. – 2008. – Vol. 56, iss. 11. – P. 2549–2562. – DOI: 10.1016/j.actamat.2008.01.037. 81. Nieh T.G. Creep rupture of a silicon carbide reinforced aluminum composite // Metallurgical Transactions A. – 1984. – Vol. 15, iss. 1. – P. 139–146. – DOI: 10.1007/BF02644396. 82. Daehn G.S., González-Doncel G. Deformation of whisker-reinforced metal-matrix composites under changing temperature conditions // Metallurgical Transactions A. – 1989. – Vol. 20, iss. 11. – P. 2355– 2368. – DOI: 10.1007/BF02666670. 83. Park K.T., Lavernia E.J., Mohamed F.A. High temperature creep of silicon carbide particulate reinforced aluminum // Acta Metallurgica et Materialia. – 1990. – Vol. 38, iss. 11. – P. 2149–2159. – DOI: 10.1016/0956- 7151(90)90082-R. 84. Park K.T., Mohamed F.A. Creep strengthening in a discontinuous SiC-Al composite // Metallurgical and Materials Transactions A. – 1995. – Vol. 26. – P. 3119– 3129. – DOI: 10.1007/BF02669441. 85. Fernández R., González-Doncel G. In fl uence of processing route and reinforcement content on the creep fracture parameters of aluminium alloy metal matrix composites // Journal of Alloys and Compounds. – 2009. –Vol. 478, iss. 1–2. – P. 133–138. – DOI: 10.1016/j. jallcom.2008.11.062. 86. Khalifa T.A., Mahmoud T.S. Elevated temperature mechanical properties ofAl alloyAA6063/SiCpMMCs //

RkJQdWJsaXNoZXIy MTk0ODM1