Rashkovets M.V., Nikulina A.A., Klimova-Korsmik O.G., Babkin K.D., Matts O.E., Mazzarisi M. 2020 Vol. 22 No. 3

OBRABOTKAMETALLOV Vol. 22 No. 3 2020 80 MATERIAL SCIENCE References 1. Sims Ch., Hagel W. The superalloys . New York, Wiley, 1974. 568 p. 2. Kolachev B.A., Elagin V.I. Livanov V.A. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov [Metallurgy and heat treatment of metals and alloys]. Moscow, MISIS Publ., 1981. 416 p. ISBN 5-87623- 027-8. 3. Richards N.L., Huang X., Chaturvedi M.C. Heat affected zone cracking in cast inconel 718. Materials Characterization , 1992, vol. 28, no. 4, pp. 179–187. DOI: 10.1016/1044-5803(92)90080-2. 4. Ren W., Lu F., Yang R., Liu X., Li Zh. A comparative study on fi ber laser and CO 2 laser welding of Inconel 617. Materials & Design , 2015, vol. 76, pp. 207–214. DOI: 10.1016/j.matdes.2015.03.033. 5. Ramkumar K.D., Kumar M.B., Krishnan M.G., Dev S., Bhalodi A.J., Arivazhagan N., Narayanan S. Studies on the weldability, microstructure and mechanical properties of activated fl ux TIG weldments of Inconel 718. Materials Science and Engineering: A , 2015, vol. 639, pp. 234–244. DOI: 10.1016/j.msea.2015.05.004. 6. Hong J.K., Park J.H., Park N.K., Eom I.S., Kim M.B., Kang C.Y. Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. Journal of Materials Processing Technology , 2008, vol. 201, no. 1–3, pp. 515–520. DOI: 10.1016/j.jmatprotec.2007.11.224. 7. Sui S., Chen J., Ming X.L., Zhang S.P., Lin X., Huang W.D. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process. The International Journal of Advanced Manufacturing Technology , 2017, vol. 91, pp. 2733–2740. DOI: 10.1007/s00170-016-9901-9. 8. Chen S.W., Zhang C., Xia Z.X., Ishikawa H., Yang Z.G. Precipitation behavior of Fe2Nb Laves phase on grain boundaries in austenitic heat resistant steels. Materials Science and Engineering: A , 2014, vol. 616, pp. 183–188. DOI: 10.1016/j.msea.2014.07.104. 9. Dong X., Zhang X., Du K., Zhou Yi. Microstructure of carbides at grain boundaries in nickel based superalloys. Journal of Materials Science & Technology , 2012, vol. 28, no. 11, pp. 1031–1038. DOI: 10.1016/S1005- 0302(12)60169-8. 10. Krakow R., Johnstone D.N., Eggeman A.S., Hünert D., Hardy M.C., Rae C.M.F., Midgley P.A. On the crystallography and composition of topologically close-packed phases in ATI 718 Plus. Acta Materialia , 2017, vol. 130, pp. 271–280. DOI: 10.1016/j.actamat.2017.03.038. 11. Vishwakarma K.R., Richards N.L., Chaturvedi M.C. Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC® 718PLUS™ superalloy. Materials Science and Engineering: A , 2008, vol. 480, no. 1–2, pp. 517–528. DOI: 10.1016/j.msea.2007.08.002. 12. Wang K.Y., Liu Yu., Sun Zh., Lin J., Lv Ya., Xu B. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. Journal of Alloys and Compounds , 2020, vol. 819. DOI: 10.1016/j.jallcom.2019.152936. 13. Inconel 718 is a Gamma Prime strengthened alloy with excellent mechanical properties at elevated temperatures. Available at: https://www.hpalloy.com/Alloys/descriptions/INCONEL718.aspx (accessed 13.08.2020). 14. Gobbi S., Zhang L., Norris J., Richter K.H., Loreau J.H. High powder CO 2 and Nd-YAG laser welding of wrought Inconel 718. Journal of Materials Science & Technology , 1996, vol. 56, no. 1–4, pp. 333–345. DOI: 10.1016/0924-0136(95)01847-6. 15. Golikov I.N., Maslenkov S.B. Dendritnaya likvatsiya v stalyakh i splavakh [Dendritic segregation in steels and alloys]. Moscow, Metallurgiya Publ., 1977. 223 p. 16. Ram G.D.J., Reddy A.V., Rao K.P., Reddy G.M., Sundar J.K.S. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. Journal of Materials Science & Technology , 2005, vol. 167, pp. 73–82. DOI: 10.1016/j.jmatprotec.2004.09.081. 17. Cao X., Rivaux B., Jahazi M., Cuddy J., Birur A. Effect of preand post-weld heat treatment on metallurgical and tensile properties of Inconel 718 alloy butt joints welded using 4 kWNd: YAG laser. Journal of Materials Science , 2009, vol. 44, no. 17, pp. 4557–4571. DOI: 10.1007/s10853-009-3691-5. 18. Antonsson T., Frederiksson H. The effect of cooling rate on the solidi fi cation of Inconel 718. Metallurgical and Materials Transactions B , 2005, vol. 36, pp. 85–101. DOI: 10.1007/s10853-009-3691-5. 19. Nie P., Ojo O.A., Li Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Materialia , 2014, vol. 77, pp. 85–95. DOI: 10.1016/j.actamat.2014.05.039. 20. Zhang Y., Yang L., Lu W., Wei D., Meng T., Gao Sh. Microstructure and elevated temperature mechanical properties of IN718 alloy fabricated by laser metal deposition. Materials Science and Engineering: A , 2020, vol. 771, p. 138580. DOI: 10.1016/j.msea.2019.138580.

RkJQdWJsaXNoZXIy MTk0ODM1