Justification of the Flow Characteristics of the Recuperator for the Thermal Preparation of Machinery and Equipment Units

OBRABOTKAMETALLOV Vol. 22 No. 4 2020 92 EQUIPMENT. INSTRUMENTS References 1. Moriwaki T. Multi-functional machine tool. CIRP Annals – Manufacturing Technology , 2008, vol. 57, iss. 2, pp. 736–749. DOI: 10.1016/j.cirp.2008.09.004. 2. Skeeba V., Pushnin V., Erohin I., Kornev D. Integration of production steps on a single equipment. Materials and Manufacturing Processes , 2015, vol. 30, iss. 12, pp. 1408–1411. DOI: 10.1080/10426914.2014.973595. 3. Yamazaki T. Development of a hybrid multi-tasking machine tool: integration of additive manufacturing technology with CNC machining. Procedia CIRP , 2016, vol. 42, pp. 81–86. DOI: 10.1016/j.procir.2016.02.193. 4. Skeeba V.Yu. Gibridnoe tekhnologicheskoe oborudovanie: povyshenie effektivnosti rannikh stadii proektirovaniya kompleksirovannykh metalloobrabatyvayushchikh stankov [Hybrid process equipment: improving the ef fi ciency of the integrated metalworking machines initial designing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2019, vol. 21, no. 2, pp. 62–83. DOI: 10.17212/1994-6309-2019-21.2-62-83. 5. Skeeba V.Yu., Pushnin V.N., Erokhin I.A., Kornev D.Yu. Analiz napryazhenno-deformirovannogo sostoyaniya materiala pri vysokoenergeticheskom nagreve tokami vysokoi chastoty [Analysis of the stress-strain state of the material under high-energy heating by high frequency currents]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2014, no. 3 (64), pp. 90–102. 6. Ivancivsky V.V., Skeeba V.Yu., Pushnin V.N. Metodika naznacheniya rezhimov obrabotki pri sovmeshchenii operatsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh [Methods of appointment processing conditions when combining the operations of abrasive grinding and surface induction hardening]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2011, no. 4, pp. 19–25. 7. Dolgushin A.A., Voronin D.M., Syrbakov A.P. Experiment of using thermal insulating materials for accumulation of heat in the transmission. IOP Conference Series: Materials Science and Engineering , 2019, vol. 632, iss. 1, pp. 012014. DOI: 10.1088/1757-899X/632/1/012014. 8. Chernukhin R.V. Reliability of the steering gear of truck vehicles. Applied Mechanics and Materials , 2013, vol. 379, pp. 36–42. DOI: 10.4028/www.scienti fi c.net/AMM.379.36. 9. Dolgushin A.A., Kurnosov A.F., Vakulenko M.V. Sistema podogreva agregatov mekhanicheskoi transmissii transportnogo sredstva [Heating system for mechanical transmission units of a vehicle]. Patent RF, no. 2595205, 2016. 10. Lane M.S., Mansour A.H., Harpell J.L. Operations research techniques: A longitudinal update 1973–1988. Interfaces , 1993, vol. 23, no. 2, pp. 63–68. DOI: 10.1287/inte.23.2.63. 11. Rodríguez-Martín M., Rodríguez-Gonzálvez P., Patrocinio A.S., Martín J.R.S. Short simulation activity to improve the competences in the fl uid-mechanical engineering classroom using solidworks fl ow simulation. Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality , León Spain, 2019, pp. 72–79. DOI: 10.1145/3362789.3362809. 12. Bellos E., Tzivanidis C., Antonopoulos K.A. Thermal performance of a direct- fl ow coaxial evacuated tube with solidworks fl ow simulation. 6th International Conference on Experiments/Process/SystemModelling/Simulation/ Optimization , Athens, Greece, 2015, pp. 505–513. 13. Nawaz H., Yuan Y.S. Thermal comfort analysis of a ship air-conditioning system using solidworks fl ow simulation. Advanced Materials Research , 2013, vol. 773, pp. 883–888. DOI: 10.4028/www.scienti fi c.net/ AMR.773.883. 14. Law A.M., Kelton W.D. Simulation modeling and analysis . 3rd ed. New York, McGraw-Hill Education, 2000. 784 p. ISBN 978-0071165372. 15. Peng Y. Research of thermal analysis collaboratively using ANSYS workbench and solidworks simulation. Applied Mechanics and Materials , 2012, vol. 127, pp. 262–266. DOI: 10.4028/www.scienti fi c.net/AMM.127.262. 16. Anderson K.R., Devost M., Pakdee W., Krishnamoorthy N. STAR CCM+ CFD simulations of enhanced heat transfer in high-power density electronics using forced air heat exchanger and pumped fl uid loop cold plate fabricated from high thermal conductivity materials. Journal of Electronics Cooling and Thermal Control , 2013, vol. 3, no. 4. DOI: 10.4236/jectc.2013.34016. 17. Othman M.N.K., Zuradzman M.R., Hazry D., Khairunizam W., Shahriman A.B., Yaacob S., Ahmed S.F., Hussain A.T. Internal air fl ow analysis of a bladeless micro aerial vehicle hemisphere body using computational fl uid dynamic. AIP Conference Proceedings , 2014, vol. 1635, no. 1, pp. 182–186. DOI: 10.1063/1.4903581. 18. DzelzitisE., SidenkoN.Numerical simulationof heat exchange indiscrete-roughchannels at fl owsuperimposed oscillations. 18th International Scienti fi c Conference “Engineering for Rural Development”: Proceedings , Jelgava, Latvia, 2019, vol. 18, pp. 1155–1161. DOI: 10.22616/ERDev2019.18.N203.

RkJQdWJsaXNoZXIy MTk0ODM1