Influence of Technology of Hot Forming of Plates from Aluminum Alloys Al-Cu-Li-Zn and Al-Zn-Mg-Cu on Resistance to Fatigue Fracture
OBRABOTKAMETALLOV Vol. 22 No. 4 2020 109 MATERIAL SCIENCE dedicated to the 80th anniversary of the birth of Academician Yu.A. Osipyan. Abstracts]. Moscow, Chernogolovka, 2011, p. 152. (In Russian). 16. Shanyavskii A.A. Modelirovanie ustalostnykh razrushenii metallov: sinergetika v aviatsii [Modeling of fatigue cracking of metals. Synergetics for aviation]. Ufa, Monogra fi ya Publ., 2007. 500 p. 17. Brown M.W., De los Rios E., Miller K.J. Environmentally assisted cracking. Proceedings ECF 12: Fracture from Defects , Cradley Heath, 1998, vol. 3, pp. 1091–1248. 18. Wu X.R., Wang Z.G., eds. Corrosion fatigue. Fatigue ’99: Proceedings 7th International Fatigue Congress , Beijing, China, 1999, vol. 4, pp. 2197–2365. 19. Korobeinikov S., Oleinikov A., Gorev B., Bormotin K. Matematicheskoe modelirovanie protsessov polzuchesti metallicheskikh izdelii iz materialov, imeyushchikh raznye svoistva pri rastyazhenii i szhatii [Mathematical simulation of creep processes in metal patterns made of materials with different extension compression properties]. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming , 2008, vol. 9, no. 1, pp. 346–365. 20. BormotinK.S.,VinA.Metod dinamicheskogo programmirovaniya v zadachakh optimal’nogo deformirovaniya paneli v rezhime polzuchesti [A method of dynamic programming in the problems of optimal panel deformation in the creep mode]. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming , 2018, vol. 19, no. 4, pp. 470–478. DOI: 10.26089/NumMet.v19r442. 21. Liu Ch., Yang J., Ma P., Ma Z., Zhan L., Chen K., Huang M., Li J., Li Zh. Large creep formability and strength– ductility synergy enabled by engineering dislocations in aluminum alloys. International Journal of Plasticity , 2020, p. 102774. 22. Lin Y.C., Jiang Y.-Q., Chen X.-M., Wen D.-X., Zhou H.-M. Effect of creep-aging on precipitates of 7075 aluminumalloy. MaterialsScienceandEngineering:A , 2013, vol. 588, pp. 347–356.DOI: 10.1016/j.msea.2013.09.045. 23. Lin Y.C., Peng X.-B., Jiang Y.-Q., Shuai C.-J. Effects of creep-aging parameters on aging precipitates of a two-stage creep-aged Al–Zn–Mg–Cu alloy under the extra compressive stress. Journal of Alloys and Compounds , 2018, vol. 743, pp. 448–455. DOI: 10.1016/j.jallcom.2018.01.238. 24. Bormotin K.S., Belykh S.V., Vin A. Matematicheskoe modelirovanie obratnykh zadach mnogotochechnogo formoobrazovaniya v rezhime polzuchesti s pomoshch’yu rekon fi guriruemogo ustroistva [Mathematical modeling of inverse multipoint forming problems in the creep mode using a recon fi gurable tool]. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming , 2016, vol. 17, no. 3, pp. 258–267. DOI: 10.26089/ NumMet.v17r324. Con fl icts of Interest The authors declare no con fl ict of interest. 2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0) .
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1