Investigation of the machinability by milling of the laser sintered Inconel 625/NiTi-TiB2 composite

OBRABOTKAMETALLOV Vol. 23 No. 1 2021 TECHNOLOGY References 1. Promakhov V., Zhukov A., Ziatdinov M., Zhukov I., Schulz N., Kovalchuk S., Dubkova Y., Korsmik R., Klimova-Korsmik O., Turichin G., PerminovA. Inconel 625/TiB2 metal matrix composites by direct laser deposition. Metals , 2019, vol. 9, iss. 2, p. 141. DOI: 10.3390/met9020141. 2. Zhang B., Bi G., Nai S., Sun C., Wei J. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting. Optics and Laser Technology , 2016, vol. 80, pp. 186–195. DOI: 10.1016/j.optlastec.2016.01.010. 3. Patel M.R.R., Ranjan M.A. Advanced techniques in machining of aerospace superalloys: a review. International Journal of Advance Research in Engineering, Science and Technology , 2015, vol. 2, no. 5, pp. 149– 154. DOI: 10.26527/ijarest.150507103716. 4. Baranchikov V.I., Tarapanov A.S., Kharlamov G.A. Obrabotka spetsial’nykh materialov v mashinostroenii [Processing of special materials in mechanical engineering]. Moscow, Mashinostroenie Publ., 2002. 264 p. ISBN 5-217-03132-8. 5. Trosch T., Strößner J., Völkl R., Glatzel U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Materials Letters , 2016, vol. 164, pp. 428–431. DOI: 10.1016/j. matlet.2015.10.136. 6. Granovskii G.I., Granovskii V.G. Rezanie metallov [Metal cutting]. Moscow, Vysshaya shkola Publ., 1985. 304 p. 7. PolishettyA., Shunmugavel M., Goldberg M., Littlefair G., Singh R.K. Cutting force and surface fi nish analysis of machining additive manufactured titanium alloy Ti-6Al-4V. Procedia Manufacturing , 2017, vol. 7, pp. 284–289. DOI: 10.1016/j.promfg.2016.12.071. 8. Roy S., Kumar R., Anurag, Panda A., Das R.K. A brief review on machining of Inconel 718. Materials Today: Proceedings , 2018, vol. 5, iss. 9, pp. 18664–18673. DOI: 10.1016/j.matpr.2018.06.212. 9. Maslenkov S.B. Zharoprochnye stali i splavy [Heat-resistant steels and alloys]. Moscow, Metallurgiya Publ., 1983. 192 p. ISBN 978-5-458-28144-7. 10. Arunachalam R., Mannan M.A. Machinability of nickel-based high temperature alloys. Machining Science and Technology , 2000, vol. 4, iss. 1, pp. 127–168. DOI: 10.1080/10940340008945703. 11. Tekhnologiya obrabotki metallov rezaniem [Technology of metal cutting]. Sandvik Coromant, 2009. 359 p. 12. Grguraš D., KernM., Pušavec F. Suitability of the full body ceramic end milling tools for high speed machining of nickel based alloy Inconel 718. Procedia CIRP , 2018, vol. 77, pp. 630–633. DOI: 10.1016/j.procir.2018.08.190. 13. Feucht F., Ketelaer J., WolffA., Mori M., Fujishima M. Latest machining technologies of hard-to-cut materials by ultrasonic machine tool. Procedia CIRP , 2014, vol. 14, pp. 148–152. DOI: 10.1016/j.procir.2014.03.040. 14. Kuo K.L., Tsao C.C. Rotary ultrasonic-assisted milling of brittle materials. Transactions of Nonferrous Metals Society of China , 2012, vol. 22, suppl. 3, pp. 793–800. DOI: 10.1016/S1003-6326(12)61806-8. 15. Kuruc M., Necpal M., Vopát T., Šimna V., Peterka J. In fl uence of ultrasonic assistance on delamination during machining of different composite materials. Annals of DAAAM and Proceedings , 2017, vol. 28. DOI: 10.2507/28th. daaam.proceedings.055. Conclusions The conducted research showed: 1. The composite material under study can be effectively processed with end mills designed for processing heat-resistant steels and titanium alloys with geometries γ = 4  , α = 10  , ω = 38  , z = 4, with a cutting speed of 20 to 30 m/min and a feed per tooth of 0.02 to 0.04 mm/tooth. 2. The optimal milling technique is the one with the value of the milling width being many times greater than the depth. The durability of the mill operating at milling depth to width ratio of 1:16, with other conditions being equal, is almost 3 times higher than at a ratio of 1:1, and 2 times higher than at a ratio of 1:4. 3. The main wear is concentrated on the fl ank surface of the mill tooth. With the selected processing modes, the critical wear value is in the range of 0.11 to 0.15 mm. After reaching this value, the wear and destruction of the mill tooth are more intensive. 4. Before the onset of critical wear of 0.11...0.15 mm, the cutting forces at different ratios of depth to width and the same volume of the cut layer per unit of time have similar values of about 70 ... 86 N.

RkJQdWJsaXNoZXIy MTk0ODM1