Determination of optimal coordinates for switching processing cycles on metal-cutting machines
OBRABOTKAMETALLOV Vol. 23 No. 1 2021 66 EQUIPMENT. INSTRUMENTS 3. Kolesnikov A.A. Prikladnaya sinergetika: osnovy sistemnogo sinteza [Applied synergetics: fundamentals of system synthesis]. Taganrog, SFU Publ., 2007. 384 p. 4. Zakovorotny V.L., Flek M.B., Ugnich E.A. Model’ upravleniya sovremennym predpriyatiem na osnove sistemno-sinergeticheskogo podkhoda [Model of the modern enterprise management on the basis of system- synergistic approach]. Ekonomicheskaya nauka sovremennoi Rossii = Economic of Contemporary Russia , 2016, no. 4 (75), pp. 112–128. 5. Zakovorotny V.L., Shapovalov V.V. Dinamika transportnykh tribosistem [Dynamics of transport tribosystems]. Sborka v mashinostroenii, priborostroenii = Assembling in Mechanical Engineering, Instrument-Making , 2005, no. 12, pp. 19–24. 6. Ryzhkin A.A. Sinergetika iznashivaniya instrumental’nykh materialov pri lezviinoi obrabotke [Synergetics of tool wear in cutting edge treatment]. Rostov-on-Don, Don State Technical University Publ., 2019. 289 p. ISBN 9785789016695. 7. Migranov M.Sh. Issledovaniya iznashivaniya instrumental’nykh materialov i pokrytii s pozitsii termodinamiki i samoorganizatsii [Research of wear of tool materials and coatings from the positions of thermodynamics and self-organization]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of Higher Educational Institutions. Ма chine Building , 2006, no. 11, pp. 65–71. 8. Zakovorotny V.L., Gvindjiliya V.E. Svyaz’ samoorganizatsii dinamicheskoi sistemy rezaniya s iznashivaniem instrumenta [Link between the self-organization of dynamic cutting system and tool wear]. Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika = Izvestiya VUZ. Applied Nonlinear Dynamics , 2020, vol. 28, no. 1, pp. 46–61. DOI: /10.18500/0869-6632-2020-28-1-46-61. 9. Zakovorotny V.L., Gvindjiliya V.E. Evolution of the dynamic cutting system with irreversible energy transformation in the machining zone. Russian Engineering Research , 2019, vol. 39, no. 5, pp. 423–430. DOI: 10.3103/ S1068798X19050204. 10. Zakovorotny V.L., Gvindjiliya V.E. Vliyanie dinamiki rezaniya na vybor tekhnologicheskikh rezhimov, obespechivayushchikh minimal’noe iznashivanie rezhushchikh instrumentov [In fl uence of cutting dynamic on the selection of the technological regimes to ensure minimal wear of cutting tools]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2020, vol. 22, no. 4, pp. 54–70. DOI: 10.17212/1994-6309-2020-22.4-54-70. 11. Lapshin V.P., Khristoforova V.V., Nosachev S.V. Vzaimosvyaz’ temperatury i sily rezaniya s iznosom i vibratsiyami instrumenta pri tokarnoi obrabotke metallov [Relationship of temperature and cutting force with tool wear and vibrations in metal turning Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) =Metal Working and Material Science , 2020, vol. 22, no. 3, pp. 44–58. DOI: 10.17212/1994-6309-2020-22.3-44-58. 12. Abdel-Aal H.A. Thermodynamic modeling of wear. Encyclopedia of Tribology . Boston, MA, Springer, 2013, pp. 3622–3636. DOI: 10.1007/978-0-387-92897-5_1313. 13. Duyun T.A., Grinek A.V., Rybak L.A. Methodology of manufacturing process design, providing quality parameters and minimal costs. World Applied Sciences Journal , 2014, vol. 30 (8), pp. 958–963. DOI: 10.5829/idosi. wasj.2014.30.08.14120. 14. Mukherjee I., Ray P.K. A review of optimization techniques in metal cutting processes. Computers and Industrial Engineering , 2006, vol. 50, no. 1–2, pp. 15–34. DOI: 10.1016/j.cie.2005.10.001. 15. Karimov I.G. Vliyanie temperatury rezaniya na energeticheskie parametry kontakta instrumenta s detal’yu [In fl uence of the cutting temperature on the energy parameters of the tool contact with the part]. Vestnik U fi mskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta = Vestnik USATU , 2012, vol. 16, no. 44 (49), pp. 85–89. 16. Gomez-Solano J.R., July C., Mehl J., Bechinger C. Non-equilibriumwork distribution for interacting colloidal particles under friction. New Journal of Physics , 2015, vol. 17, p. 045026. DOI: 10.1088/1367-2630/17/4/045026. 17. Banjac M. Friction and wear processes-thermodynamic approach. Tribology in Industry , 2014, vol. 36, no. 4, pp. 341–347. 18. Kozochkin M.P., Fedorov S.V., Tereshin M.V. Sposob opredeleniya optimal’noi skorosti rezaniya v protsesse metalloobrabotki [Method for determining the optimal cutting speed in the process of metalworking]. Patent RF, no. 2538750, 2015. 19. Zariktuev V.Ts. Avtomatizatsiya protsessov na osnove polozheniya ob optimal’noi temperature rezaniya [Automatization of process based on concept of optimal cutting temperature]. Vestnik U fi mskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta = Vestnik USATU , 2009, vol. 12, no. 4, pp. 14–19. 20. Begic-Hajdarevic D., Cekic A., Kulenovic M. Experimental study on the high speed machining of hardened steel. Procedia Engineering , 2014, vol. 69, pp. 291–295. DOI: 10.1016/j.proeng.2014.02.234.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1