Determination of optimal coordinates for switching processing cycles on metal-cutting machines

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 1 22. Chin C.-H.,WangY.-C., Lee B.-Y. The effect of surface roughness of end-mills on optimal cutting performance for high-speed machining. Strojniski Vestnik = Journal of Mechanical Engineering , 2013, vol. 52 (2), pp. 124–134. DOI: 10.5545/sv-jme.2012.677. 23. Kant G., Sangwan K.S. Prediction and optimization of machining parameters for minimization power consumption and surface roughness in machining. Journal of Cleaner Production , 2014, vol. 83, pp. 151–164. DOI: 10.1016/j.jclepro.2014.07.073. 24. Ryzhkin A.A. [Synergetic aspects of managing the wear resistance of tool cutting materials]. Dinamika tekhnicheskikh sistem: XII mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya : sbornik trudov [Dynamics of technical systems. Proceedings of the XII scienti fi c and technical international conference]. Rostov-on-Don, 2016, pp. 9–10. (In Russian). 25. Solomentsev Yu.M., Mitrofanov V.G., Timiryazev V.A. Adaptivnoe upravlenie tekhnologicheskimi protsessami na metallorezhushchikh stankakh [Adaptive control of technological processes on machines]. Moscow, Mashinostroenie Publ., 1980. 536 p. 26. Bazrov B.M. Povyshenie effektivnosti mekhanicheskoi obrabotki detalei s pomoshch’yu sistem adaptivnogo upravleniya [Improving the ef fi ciency of machining parts by means of systems of adaptive control]. Moscow, TsNIITEIlegpishchemash Publ., 1976. 67 p. 27. Sosonkin V.L., Martinov G.M. Noveishie tendentsii v oblasti arkhitekturnykh reshenii sistem ChPU [Latest trends in the architecture of CNC systems]. Avtomatizatsiya v promyshlennosti = Automation in Industry , 2005, no. 4, pp. 3–9. 28. Brzhozovsky B.M., Yankin I.N., Brovkova M.B. Controlling the oscillatory process composition in machining by correcting the exciting force structure in the cutting zone. Procedia Engineering , 2016, vol. 150, pp. 241–246. DOI: 10.1016/j.proeng.2016.06.755. 29. Miko ł ajczyk T., Nowicki K., K ł odowski A., Pimenov D.Y. Neural network approach for automatic image analysis of cutting edge wear. Mechanical Systems and Signal Processing , 2017, vol. 88, pp. 100–110. DOI: 10.1016/j. ymssp.2016.11.026. 30. Martinov G.M., Pushkov R.L., Evsta fi eva S.V. Collecting diagnostic operational data from CNC machines during operation process. IOP Conference Series: Materials Science and Engineering , 2020, vol. 709, no. 3, p. 033051. DOI: 10.1088/1757-899X/709/3/033051. 31. Martinov G., Martinova L., Ljubimov A. From classic CNC systems to cloud-based technology and back. Robotics and Computer-Integrated Manufacturing , 2020, vol. 63. DOI: 10.1016 / j. rcim.2019.101927. 32. Martinov G., Kozak N., Nezhmetdinov R. Approach in implementing of logical task for numerical control on basis of concept “Industry 4.0”. 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) , Moscow, Russia, 2018, pp. 1–6. DOI: 10.1109/ICIEAM.2018.8728584. 33. Kozlov A.M., Malyutin G.E., Handozhko A.V. Performance increase of precision volumetric milling on machines based on frame-accurate control. Procedia Engineering , 2017, vol. 206, pp. 1111–1119. DOI: 10.1016/j. pro-eng.2017.10.603. 34. Arslan H., Er A.O., Orhan S., Aslan E. Tool condition monitoring in turning using statistical parameters of vibration signal. International Journal of Acoustics and Vibration , 2016, vol. 21, no. 4, pp. 371–378. DOI: 10.20855/ ijav.2016.21.4432. 35. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov [Mathematical theory of optimal processes]. Moscow, Nauka Publ., 1969. 384 p. 36. Boltyanskii V.G. Modelirovanie linejnyh optimal’nyh bystrodejstvij pri pomoshchi relejnyh skhem [The simulation of linear, optimal high-speed operations by relay circuits]. Doklady Akademii nauk SSSR = Proceedings of the USSR Academy of Sciences , 1961, vol. 139, no. 2, pp. 275–278. 37. Zakovorotny V.L., Bordatchev E.V., Sankar T.S. Variational formulation for optimal multi-cycle deep drilling of small holes. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1997, vol. 119, no. 3, pp. 553–560. DOI: 10.1115/1.2801293. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1