Effect of mechanical activation of WC-based powder on the properties of sintered alloys

OBRABOTKAMETALLOV Vol. 23 No. 1 2021 77 MATERIAL SCIENCE References 1. Ryu T., Sohn H.Y., Hwang K.S., Fang Z.Z. Plasma synthesis of tungsten carbide and cobalt nanocomposite powder. Journal of Alloys and Compounds , 2009, vol. 481 (1–2), pp. 274–277. DOI: 10.1016/j.jallcom.2009.03.134. 2. Shon I.-J., Kim B.-R., Doh J.-M., Yoon J.-K., Woo K.-D. Properties and rapid consolidation of ultra-hard tung- sten carbide. Journal of Alloys and Compounds , 2010, vol. 489 (1), pp. L4–L8. DOI: 10.1016/j.jallcom.2009.09.040. 3. Lee G.-H., Kang S. Sintering of nano-sized WC-Co powders produced by a gas reduction-carburization pro- cess. Journal of Alloys and Compounds , 2006, vol. 419 (1–2), pp. 281–289. DOI: 10.1016/j.jallcom.2005.09.060. 4. Kim J.Y., Kang S.H. WC platelet formation via high-energy ball mill. International Journal of Refractory Met- als and Hard Materials , 2014, vol. 47, pp. 108–112. DOI: 10.1016/J.IJRMHM.2014.06.024. 5. Kim B.K., Ha G.H., Lee D.W. Sintering and microstructure of nanophase WC/Co hardmetals. Journal of Ma- terials Processing Technology , 1997, vol. 63, pp. 317–321. DOI: 10.1016/s0924-0136(96)02748-3. 6. Wang W., Lu Z., Zeng M., Zhu M. Achieving combination of high hardness and toughness for WC-8Co hard- metals by creating dual scale structured plate-like WC. Ceramics International , 2018, vol. 44 (3), pp. 2668–2675. DOI: 10.1016/j.ceramint.2017.10.190. 7. Stewart D.A., Shipway P.H., McCartney D.G. Microstructural evolution in thermally sprayed WC-Co coat- ings: comparison between nanocomposite and conventional starting powders. Acta Materialia , 2000, vol. 48 (7), pp. 1593–1604. DOI: 10.1016/s1359-6454(99)00440-1. 8. Fabijani ć T.A., Alar Ž., Ć ori ć D. In fl uence of consolidation process and sintering temperature on microstruc- ture and mechanical properties of near nano- and nanostructured WC-Co cemented carbides. International Journal of Refractory Metals and Hard Materials , 2016, vol. 54, pp. 82–89. DOI: 10.1016/j.ijrmhm.2015.07.017. 9. Kim H.-C., Shon I.-J., Yoon J.-K., Doh J.-M. Consolidation of ultra fi ne WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties. International Journal of Refractory Metals and Hard Materials , 2007, vol. 25 (1), pp. 46–52. DOI: 10.1016/j.ijrmhm.2005.11.004. 10. El-Eskandarany M.S. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. Journal of Alloys and Compounds , 2000, vol. 305, pp. 225–238. DOI: 10.1016/ s0925-8388(00)00692-7. 11. Raihanuzzaman R.M., Xie Z.H., Hong S.J. Powder re fi nement, consolidation and mechanical properties of cemented carbides – an overview. Powder Technology , 2014, vol. 261, pp. 1–13. DOI: 10.1016/j.powtec.2014.04.024. 12. Koch C.C. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nano- structured Materials , 1997, vol. 9, pp. 13–22. DOI: 10.1016/s0965-9773(97)00014-7. 13. Vega L.E.R., Leiva D.R., Leal Neto R.M., Silva W.B., Silva R.A., Ishikawa T.T., Botta W.J. Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere. International Journal of Hydrogen Energy , 2018, vol. 43 (5), pp. 2913–2918. DOI: 10.1016/j.ijhydene.2017.12.054. 14. Zaluski L., Tessier P., Ryan D.H., Doner C.B., Zaluska A., Ström-Olsen J.O., Trudeau M.L., Schulz R. Amorphous and nanocrystalline Fe-Ti prepared by ball-milling. Journal of Materials Research , 1993, vol. 8 (12), pp. 3059–3068. DOI: 10.1557/jmr.1993.3059. 15. Mushnikov N.V., Ermakov A.E., Uimin M.A. Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen. The Physics of Metals and Metallography , 2006, vol. 102 (4), pp. 421–431. DOI: 10.1134/ s0031918x06100097. 16. Stepanov A., Ivanov E., Konstanchuk I. Hydriding properties of mechanical alloys Mg-Ni. Journal of the Less-Common Metals , 1987, vol. 131, pp. 89–97. DOI: 10.1016/0022-5088(87)90504-2. 17. Sun J.F., Zhang F.M., Shen J. Characterizations of ball-milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets. Materials Letters , 2003, vol. 57, pp. 3140–3148. DOI: 10.1016/ S0167-577X(03)00011-9. 18. Liu K., Wang Z.H., Yin Z.B., Cao L.Y., Yuan J.T. Effect of Co content on microstructure and mechanical properties of ultra fi ne grained WC-Co cemented carbide sintered by spark plasma sintering. Ceramics International , 2018, vol. 44, pp. 18711–18718. DOI: 10.1016/j.ceramint.2018.07.100. 19. Zhao Z.W. Microwave-assisted synthesis of vanadium and chromium carbides nanocomposite and its effect on properties of WC-8Co cemented carbides. Scripta Materialia , 2016, vol. 120, pp. 103–106. DOI: 10.1016/j.scrip- tamat.2016.04.024. 20. Kinoshita S., Saito T., Kobayashi M., Hayashi K. Microstructure and mechanical properties of new WC-Co base cemented carbide having highly oriented plate-like triangular prismatic WC grains. Journal of the Japan Society of Powder and Powder Metallurgy , 2000, vol. 47 (5), pp. 526–533. DOI: 10.2497/jjspm.47.526.

RkJQdWJsaXNoZXIy MTk0ODM1