Effect of mechanical activation of WC-based powder on the properties of sintered alloys

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 1 2021 18. Liu K., Wang Z.H., Yin Z.B., Cao L.Y., Yuan J.T. Effect of Co content on microstructure and mechanical properties of ultra fi ne grained WC-Co cemented carbide sintered by spark plasma sintering. Ceramics International , 2018, vol. 44, pp. 18711–18718. DOI: 10.1016/j.ceramint.2018.07.100. 19. Zhao Z.W. Microwave-assisted synthesis of vanadium and chromium carbides nanocomposite and its effect on properties of WC-8Co cemented carbides. Scripta Materialia , 2016, vol. 120, pp. 103–106. DOI: 10.1016/j.scrip- tamat.2016.04.024. 20. Kinoshita S., Saito T., Kobayashi M., Hayashi K. Microstructure and mechanical properties of new WC-Co base cemented carbide having highly oriented plate-like triangular prismatic WC grains. Journal of the Japan Society of Powder and Powder Metallurgy , 2000, vol. 47 (5), pp. 526–533. DOI: 10.2497/jjspm.47.526. 21. Nobuki T., Crivello J-C., Cuevas F. Fast synthesis of TiNi by mechanical alloying and its hydrogena- tion properties. International Journal of Hydrogen Energy , 2019, vol. 44, pp. 10770–10776. DOI: 10.1016/j. ijhydene.2019.02.203. 22. He M., Wang J.Y., He R.G., Yang H.L. Effect of cobalt content on the microstructure and mechanical proper- ties of coarse grained WC-Co cemented carbides fabricated from chemically coated composite powder. Journal of Alloys and Compounds , 2018, vol. 766, pp. 556–563. DOI: 10.1016/j.jallcom.2018.06.366. 23. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch . Berlin, Heidelberg, Springer, 1912, pp. 387–409. DOI: 10.1007/978-3-662-33915-2_7. 24. Stokes A.R., Wilson A.J.C. The diffraction of X rays by distorted crystal aggregates. Proceedings of the Physical Society , 1944, vol. 56, pp. 174–181. DOI: 10.1088/0959-5309/56/3/303. 25. Bratanich T., Get’man O., Dobrovol’skii V., Kopylova L., Krapivka N., Permyakova T., Skorokhod V. Phase transformations and change in TiNi intermetallic compound structure during destructive hydrogenation and recom- bination. Powder Metallurgy and Metal Ceramics , 2006, vol. 45, pp. 582–587. DOI: 10.1007/s11106-006-0122-x. 26. Ban Z.G., Shaw L.L. Synthesis and processing of nanostructured WC-Co materials. Journal of Materials Sci- ence , 2002, vol. 37, pp. 3397–3403. 27. Berger S., Porat R., Rosen R. Nanocrystalline materials: a study of WC-based hard metals. Progress in Ma- terials Science , 1997, vol. 42 (1–4), pp. 311–320. DOI: 10.1016/s0079-6425(97)00021-2. 28. Zhang F.L., Wang C.Y., Zhu M. Nanostructured WC/Co composite powder prepared by high energy ball mill- ing. Scripta Materialia , 2003, vol. 49, pp. 1123–1128. DOI: 10.1016/j.scriptamat.2003.08.009. 29. Ding Q., Zhenga Y., Ke Z., Zhang G., Wu H., Xu X., Lu X., Zhu X. Effects of fi ne WC particle size on the microstructure and mechanical properties of WC-8Co cemented carbides with dual-scale and dual morphology WC grains. International Journal of Refractory Metals and Hard Materials , 2020, vol. 87, pp. 105166-1–105166-7. DOI: 10.1016/j.ijrmhm.2019.105166. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1