Invariant stress state parameters for forging upsetting of magnesium in the shell

OBRABOTKAMETALLOV Vol. 23 No. 1 2021 87 MATERIAL SCIENCE 3. Proust G. Processing magnesium at room temperature. Science , 2019, vol. 364 (6448), pp. 30–31. DOI: 10.1126/ science.aax9732. 4. Chang L.L., Wang Y.N., Zhao X., Huang J.C. Microstructure and mechanical properties in an AZ31 magne- sium alloy sheet fabricated by asymmetric hot extrusion. Materials Science and Engineering: A , 2008, vol. 496, iss. 1–2, pp. 512–516. DOI: 10.1016/j.msea.2008.06.015. 5. Loginov Yu.N., Kamenetsky B.I., Zamaraeva Yu.V. Mezhsloinoe vzaimodeistvie pri osadke bimetallicheskoi zagotovki [Interlayed interaction in the upsetting of the bimetallic billets]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem = Forging and Stamping Production. Material Working by Pressure , 2019, no. 7, pp. 41–45. 6. Pan F., Wang Q., Jiang B., He J., Chai Y., Xu J. An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets. Materials Science and Engineering: A , 2016, vol. 655, pp. 339–345. DOI: 10.1016/j.msea.2015.12.098. 7. Khanawapee U., Butdee S. A study of barreling and DEFORM 3D simulation in cold upsetting of bi-material. Materials Today: Proceedings , 2020, vol. 26, pt. 2, pp. 1262–1270. DOI: 10.1016/j.matpr.2020.02.252. 8. Malcher L., Mamiya E.N. An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant. International Journal of Plasticity , 2014, vol. 56, pp. 232–261. DOI: 10.1016/j.ijplas.2014.01.002. 9. Yoon J.W., Lou Y., Yoon J., Glazoff M.V. Asymmetric yield function based on the stress invariants for pressure sensitive metals. International Journal of Plasticity , 2014, vol. 56, pp. 184–202. DOI: 10.1016/j.ijplas.2013.11.008. 10. Driemeier L., Micheli G., Alves M., Brünig M. Experiments on stress-triaxiality dependence of material behavior of aluminum alloys. Mechanics of Materials , 2010, vol. 42, iss. 2, pp. 207–217. DOI: 10.1016/j. mechmat.2009.11.012. 11. Xiao X., Mu Z., Pan H., LouY. Effect of the lode parameter in predicting shear cracking of 2024-t351 aluminum alloy Taylor rods. International Journal of Impact Engineering , 2018, vol. 120, pp. 185–201. DOI: 10.1016/j. ijimpeng.2018.06.008. 12. Mirone G., Corallo D. A local viewpoint for evaluating the in fl uence of stress triaxiality and lode angle on ductile failure and hardening. International Journal of Plasticity , 2010, vol. 26, iss. 3, pp. 348–371. DOI: 10.1016/j. ijplas.2009.07.006. 13. Kamenetsky B.I., Loginov Yu.N., VolkovA.Yu. Metody i ustroistva dlya povysheniya plastichnosti khrupkikh materialov pri kholodnoi osadke s bokovym podporom [Methods and apparatus for increase of brittle materials plasticity under cold upsetting with lateral support]. Zagotovitel’nye proizvodstva v mashinostroenii = Blanking productions in mechanical engineering , 2013, no. 9, pp. 15–22. 14. Volkov A.Yu., Antonova O.V., Kamenetskii B.I., Klyukin I.V., Komkova D.A., Antonov B.D. Poluchenie, struktura, tekstura i mekhanicheskie svoistva sil’no deformirovannykh obraztsov magniya [Production, structure, texture, and mechanical properties of severely deformed magnesium]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2016, vol. 117, iss. 5, pp. 518–528. DOI: 10.1134/S0031918X16050161. (In Russian). 15. Kamenetsky B.I., Loginov Yu.N., Kruglikov N.A. Vliyanie uslovii bokovogo podpora na plastichnost’ magniya pri kholodnoi osadke [The effect of lateral back pressure conditions on magnesium plasticity during cold upsetting]. Tekhnologiya legkikh splavov = Technology of light alloys , 2012, no. 1, pp. 86-92. 16. Design Environment for forming: website. 2021. Available at: http://www.DEFORM.com (accessed 08.02.2021). 17. Kolmogorov V.L. Mekhanika obrabotki metallov davleniem [Mechanics of metal processing by pressure]. Ekaterinburg, Ural State Technical University Publ., 2001. 834 p. 18. Loginov Yu.N., Zamaraeva Yu.V., Kamenetskiy B.I. Osadka tsilindricheskoi magnievoi zagotovki v mednoi obolochke bez ee obzhatiya [Upsetting of cylinder magnesium blanks in copper casing without compression]. Tsvetnye metally , 2020, no. 4, pp. 77–82. DOI: 10.17580/tsm.2020.04.09. (In Russian). 19. Komkova D.A., Volkov A.Yu. Struktura i tekstura magniya posle nizkotemperaturnoi megaplasticheskoi deformatsii [Magnesium structure and texture after the low-temperature megaplastic deformation]. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta = Science Vector of Togliatti State University , 2017, no. 3 (41), pp. 70–75.

RkJQdWJsaXNoZXIy MTk0ODM1