Simulation of the stock removal in the contact zone during internal grinding of brittle non-metallic materials
OBRABOTKAMETALLOV Vol. 23 No. 2 2021 39 TECHNOLOGY 4. Leonesio M., Parenti P., Cassinari A., Bianchi G. , Monn M. A time-domain surface grinding model for dy- namic simulation. Procedia CIRP , 2012, vol. 4, pp. 166–171. DOI: 10.1016/j.procir.2012.10.030. 5. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process. Procedia Engineering , 2016, vol. 150, pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739. 6. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process. Journal of Sound and Vibration , 2005, vol. 280, pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006. 7. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP , 2017, vol. 58, pp. 422–427. DOI: 10.1016/j.procir.2017.03.247. 8. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools and Manufacture , 2008, vol. 48, pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001. 9. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high ef fi ciency deep grinding. Procedia CIRP , 2012, vol. 1, pp. 382–387. DOI: 10.1016/j.procir.2012.04.068. 10. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modeling Practice and Theory , 2015, vol. 57, pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005. 11. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. International Journal of Advanced Manufacturing Technology , 2016, vol. 86, pp. 1933– 1943. DOI: 10.1007/s00170-015-8262-0. 12. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. International Journal of Advanced Manufacturing Technology , 2014, vol. 75, pp. 1245–1252. DOI: 10.1007/s00170- 014-6189-5. 13. Arriandiaga A., Portillo E., Sanchez J.A., Cabanes I., Pombo I. A new approach for dynamic modeling of energy consumption in the grinding process using recurrent neural networks. Neural Computing and Applications , 2016, vol. 27, pp. 1577–1592. DOI: 10.1007/s00521-015-1957-1. 14. Soler Ya.I. , Le N.V., Si M.D. In fl uence of rigidity of the hardened parts on forming the shape accuracy during fl at grinding. MATEC Web of Conferences , 2017, vol. 129, p. 01076. DOI: 10.1051/matecconf/201712901076. 15. Soler Ya.I., Khoang N.A. Vliyanie glubiny rezaniya na vysotnye sherokhovatosti instrumentov iz stali U10A pri ploskom shlifovanii krugami iz kubicheskogo nitrida bora [Effect of cutting depth on the high-altitude roughness of tools made of steel U10A with fl at grinding with cubic boron nitride]. Aviamashinostroenie i transport Sibiri [Aircraft engineering and transport of Siberia]. Irkutsk, 2017, pp. 250–254. (In Russian). 16. Novoselov Yu., Bratan S., Bogutsky V., Gutsalenko Yu. Calculation of surface roughness parameters for external cylindrical grinding. Fiabiltate si Durabilitate = Fiability and Durability , 2013, suppl. 1, pp. 5–15. 17. Novoselov Yu.K. Dinamika formoobrazovaniya poverkhnostei pri abrazivnoi obrabotke [Dynamics of surface shaping during abrasive processing]. Sevastopol, SevNTU Publ., 2012. 304 p. ISBN 978-617-612-051-3. 18. Bratan S.M., Vladetskaya E.A, Vladetskii D.O., KharchenkoA.O. Povyshenie kachestva detalei pri shlifovanii v usloviyakh plavuchikh masterskikh [Improving the quality of parts when grinding in fl oating workshops]. Moscow, Vuzovskii uchebnik Publ., Infra-M Publ., 2018. 154 p. ISBN 978-5-9558-0598-6. 19. Lobanov D.V., Yanyushkin A.S., Arkhipov P.V. Napryazhenno-deformirovannoe sostoyanie tverdosplavnykh rezhushchikh elementov pri almaznom zatachivanii [Stress-strain state of carbide cutting elements during diamond sharpening]. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta = Vector of sciences. Togliatti State University , 2015, no. 3-1 (33-1). pp. 85–91. DOI: 10.18323/2073-5073-2015-3-85-91. 20. Kassen G., Werner G. Kinematische Kenngrößen des Schleifvorganges [Kinematic parameters of the grinding process]. Industrie-Anzeiger = Industry scoreboard , 1969, no. 87, pp. 91–95. (In German). 21. Bratan S., Roshchupkin S., Kolesov A., Bogutsky B. Identi fi cation of removal parameters at combined grinding of conductive ceramic materials. MATEC Web of Conferences , 2017, vol. 129, p. 01079. DOI: 10.1051/ matecconf/201712901079. 22. Gusev V.V., Moiseev D.A. Iznos almaznogo shlifoval’nogo kruga pri obrabotke keramiki [Wear of a diamond grinding wheel when processing ceramics]. Progressivnye tekhnologii i sistemy mashinostroeniya = Progressive Technologies and Systems of Mechanical Engineering , 2019, no. 4 (67), pp. 25–29. (In Russian). 23. Novoselov Yu., Bratan S., Bogutsky B. Analysis of relation between grinding wheel wear and abrasive grains wear. Procedia Engineering , 2016, vol. 150, pp. 809–814. DOI: 10.1016/j.proeng.2016.07.116. Con fl icts of Interest The authors declare no con fl ict of interest. 2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1