Simulation of the stock removal in the contact zone during internal grinding of brittle non-metallic materials

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 technology microcracks in the surface layer. The developed mathematical models make it possible to trace the effect on the removal of the allowance of the imposition of single cuts when grinding holes in brittle non-metallic materials. The obtained regularities of change in the probability of material removal upon contact of the treated surface with an abrasive tool and analytical dependences [21, 23] are valid for a wide range of grinding modes, tool characteristics and other technological factors. References 1. Malkin S., Guo C. Grinding technology: theory and applications of machining with abrasives. New York, Industrial Press, 2008. 372 р. ISBN 978-0-8311-3247-7. 2. Hou Z.B., Komanduri R. On the mechanics of the grinding process. Pt. 1. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture, 2003, vol. 43, pp. 1579–1593. DOI: 10.1016/ S0890-6955(03)00186-X. 3. Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation. MATEC Web of Conferences, 2018, vol. 148, pp. 09004–09008. DOI: 10.1051/ matecconf/20181480900. 4. Leonesio M., Parenti P., Cassinari A., Bianchi G., Monn M. A time-domain surface grinding model for dynamic simulation. Procedia CIRP, 2012, vol. 4, pp. 166–171. DOI: 10.1016/j.procir.2012.10.030. 5. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process. Procedia Engineering, 2016, vol. 150, pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739. 6. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process. Journal of Sound and Vibration, 2005, vol. 280, pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006. 7. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP, 2017, vol. 58, pp. 422–427. DOI: 10.1016/j.procir.2017.03.247. 8. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools and Manufacture, 2008, vol. 48, pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001. 9. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high efficiency deep grinding. Procedia CIRP, 2012, vol. 1, pp. 382–387. DOI: 10.1016/j.procir.2012.04.068. 10. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modeling Practice and Theory, 2015, vol. 57, pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005. 11. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. International Journal of Advanced Manufacturing Technology, 2016, vol. 86, pp. 1933– 1943. DOI: 10.1007/s00170-015-8262-0. 12. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. International Journal of Advanced Manufacturing Technology, 2014, vol. 75, pp. 1245–1252. DOI: 10.1007/s00170- 014-6189-5. 13. Arriandiaga A., Portillo E., Sanchez J.A., Cabanes I., Pombo I. A new approach for dynamic modeling of energy consumption in the grinding process using recurrent neural networks. Neural Computing and Applications, 2016, vol. 27, pp. 1577–1592. DOI: 10.1007/s00521-015-1957-1. 14. Soler Ya.I., Le N.V., Si M.D. Influence of rigidity of the hardened parts on forming the shape accuracy during flat grinding. MATEC Web of Conferences, 2017, vol. 129, p. 01076. DOI: 10.1051/matecconf/201712901076. 15. Soler Ya.I., Khoang N.A. Vliyanie glubiny rezaniya na vysotnye sherokhovatosti instrumentov iz stali U10A pri ploskom shlifovanii krugami iz kubicheskogo nitrida bora [Effect of cutting depth on the high-altitude roughness of tools made of steel U10A with flat grinding with cubic boron nitride]. Aviamashinostroenie i transport Sibiri [Aircraft engineering and transport of Siberia]. Irkutsk, 2017, pp. 250–254. (In Russian). 16. Novoselov Yu., Bratan S., Bogutsky V., Gutsalenko Yu. Calculation of surface roughness parameters for external cylindrical grinding. Fiabiltate si Durabilitate = Fiability and Durability, 2013, suppl. 1, pp. 5–15. 17. NovoselovYu.K. Dinamika formoobrazovaniya poverkhnostei pri abrazivnoi obrabotke [Dynamics of surface shaping during abrasive processing]. Sevastopol, SevNTU Publ., 2012. 304 p. ISBN 978-617-612-051-3. 18. Bratan S.M., Vladetskaya E.A, Vladetskii D.O., KharchenkoA.O. Povyshenie kachestva detalei pri shlifovanii v usloviyakh plavuchikh masterskikh [Improving the quality of parts when grinding in floating workshops]. Moscow, Vuzovskii uchebnik Publ., Infra-M Publ., 2018. 154 p. ISBN 978-5-9558-0598-6.

RkJQdWJsaXNoZXIy MTk0ODM1