Control of gaps in technical structures during ground vibration testing

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 52 EQUIPMENT. INSTRUMENTS References 1. Tiwari R. Rotor systems: analysis and identi fi cation . Boca Raton, CRC Press, 2017. 1069 p. ISBN 978-1-138- 03628-4. 2. Bachschmid N., Pennacchi P., Tanzi E. Cracked rotors: a survey on static and dynamic behaviour including modelling and diagnosis . Berlin, Heidelberg, Springer-Verlag, 2010. 408 p. ISBN 978-3-642-01485-7. 3. Kostyukov V.N., Naumenko A.P. Osnovy vibroakusticheskoi diagnostiki i monitoringa mashin [Basics of vi- broacoustic diagnostics and monitoring of machines]. Omsk, OmSTU Publ., 2011. 360 p. ISBN 978-5-8149-1101-8. 4. Balitskii F.Ya., Barkov A.V., Barkova N.A. et al. Nerazrushayushchii kontrol’ . T. 7, kn. 2. Vibrodiagnostika [Non-destructive testing. Vol. 7, bk. 2. Vibration-based diagnostics]. Moscow, Mashinostroenie Publ., 2005. 829 p. ISBN 5-217-03298-7. 5. Zhukov R.V. Obzor nekotorykh standartov ISO/TC-108 v oblasti diagnostiki mashinnogo oborudovaniya [An overview of some ISO/TC-108 standards in the fi eld of machinery diagnostics]. Kontrol’. Diagnostika = Testing. Diagnostics , 2004, no. 12, pp. 61–66. 6. Zhuge Qi, Lu Yongxiang, Yang Shichao. Non-stationary modelling of vibration signals for monitoring the condition of machinery. Mechanical Systems and Signal Processing , 1990, vol. 4, iss. 5, pp. 355–365. 7. Lacey S.J. Using vibration analysis to detect early failure of bearings. Insight – Non-Destructive Testing and Condition Monitoring , 2007, vol. 49, no. 8, pp. 444–446. 8. Litak G., Friswell M.I. Dynamics of a gear system with faults in meshing stiffness. Nonlinear Dynamics , 2005, vol. 41, iss. 1–3, pp. 415–421. DOI: 10.1007/s11071-005-1398-y. 9. Vibrodiagnostika aviatsionnykh konstruktsii [Vibrodiagnostics aircraft structures]. Moscow, GosNIIGA Publ., 1986. 95 p. 10. Postnov V.A. Opredelenie povrezhdenii uprugikh sistem putem matematicheskoi obrabotki chastotnykh spektrov, poluchennykh iz eksperimenta [Determination of elastic systems damages by mathematical treatment of frequency spectra obtained from the experiment]. Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela = Mechanics of Solids , 2000, no. 6, pp. 155–160. (In Russian). 11. Kositsyn A.V. Metod vibrodiagnostiki defektov uprugikh konstruktsii na osnove analiza sobstvennykh form kolebanii [Method of the vibrating diagnostics of deffects of elastic designs on the basis of the analysis own forms of fl uctuations]. Pribory i metody izmerenii = Devices and Methods of Measurements , 2011, no. 2 (3), pp. 129–135. (In Russian). 12. Perera R., Fang S.E., Huerta C. Structural crack detection without updated baseline model by single and multi-objective optimization. Mechanical Systems and Signal Processing , 2009, vol. 23, iss. 3, pp. 752–768. DOI: 10.1016/j.ymssp.2008.06.010. 13. Dilena M., Morassi А . Damage detection in discrete vibrating systems. Journal of Sound and Vibration , 2006, vol. 289, pp. 830–850. DOI: 10.1016/j.jsv.2005.02.020. 14. Xu M., Wang S., Jiang Y. Structural damage identi fi cation by a cross modal energy sensitivity based mode subset selection strategy. Marine Structures , 2021, vol. 77, pp. 1–22. DOI: 10.1016/j.marstruc.2021.102968. 15. Barbieri N., Barbieri R. Study of damage in beams with different boundary conditions. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering , 2013, vol. 7, iss. 6, pp. 399–405. 16. Doebling S.W., Farrar C.R., Prime M.B., Shevitz D.W. Damage identi fi cation and health monitoring of struc- tural and mechanical systems from changes in their vibration characteristics: a literature review . Technical Report LA-13070-MS. Los Alamos National Laboratory. Los Alamos, NM, 1996. 132 p. 17. Viktorov I.A. Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike [Physical fun- damentals of application of the Rayleigh and Lamb ultrasonic waves to technical devices]. Moscow, Nauka Publ., 1966. 169 p. 18. Worlton D. С . Ultrasonic testing with Lamb waves. Non-Destructive Testing , 1957, vol. 15, iss. 4, pp. 218–222. 19. Worlton D.C. Experimental con fi rmation of Lamb waves at megacycle frequencies. Journal of Applied Phys- ics , 1961, vol. 32, pp. 967–971. 20. Kessler S.S., Spearing M.S., Soutis C. Structural health monitoring in composite materials using Lamb wave methods. Smart Materials and Structures , 2002, vol. 11, pp. 269–278. DOI: 10.1999/1307-6892/9351. 21. Zaitsev V, Sas P. Nonlinear response of a weakly damaged metal sample. Journal of Vibration and Control , 2000, vol. 6, pp. 803–822. 22. Bovsunovskii A.P., Matveev V.V. Vibrodiagnosticheskie parametry ustalostnoi povrezhdennosti uprugikh tel [Vibrational diagnostics parameters of fatigue damage in elastic bodies]. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) , Ternopil, 25–28 September 2006, pp. 212–218. (In Russian).

RkJQdWJsaXNoZXIy MTk0ODM1